
 Advanced search

Linux Journal Issue #90/October 2001

Features

Open-Souce Software at the Aerodynamics Laboratory by Steve
Jenkins

Jenkins uses a variety of open-source software to keep wind
tunnel data flowing smoothly.

Linux and Samba in a Federal Lab by Brian Gollsneider and Mike
Martin

Users at this army research lab think they're accessing data
from an NT fileserver—but it's Linux.

Toolbox

Take Command at Your Service—Job Scheduling for Linux by Louis
J. Iacona
Kernel Korner How to Write a Linux USB Device Driver by Greg
Kroah-Hartman
At the Forge Data Modeling with Alzabo by Reuven M. Lerner
Cooking with Linux Engineering Intelligence by Marcel Gagné
Paranoid Penguin GPG: the Best Free Crypto You Aren't Using, Part
II of II by Mick Bauer
GFX Alias|Wavefront Maya 4 by Robin Rowe

Columns

Linux in Education Modeling Seismic Wave Propogation on a 156GB
PC Cluster by Dimitri Komatitsch and Jeroen Tromp
Focus on Software Distribution Upgrades by David A. Bandel

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/090/4835.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4881.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4719.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4786.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4887.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4889.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4892.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4892.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/5235.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4671.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4671.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4868.html

Geek Law Naming Open-Source Software by Lawrence Rosen
Linux for Suits The Bazaar Way to Bet by Doc Searls
Focus on Embedded Systems The Robots Are Coming, The Robots
Are Coming by Rick Lehrbaum

Reviews

Microlite BackupEDGE Version 01.01.08 by Charles Curley

Departments

Letters
upFRONT
From the Editor by Richard Vernon
Best of Technical Support
New Products

Strictly On-Line

O'Reilly Show Report, Day One by Doc Searls

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/090/4877.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4883.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4890.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4890.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4691.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/5206.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4886.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/5284.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/5207.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/5236.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/5353.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Open-Source Software at the Aerodynamics Laboratory

Steve Jenkins

Issue #90, October 2001

Steve describes a typical aircraft experiment and the open-source software
involved.

Long ago, before the Open-Source Software (OSS) movement, before the World
Wide Web, before the Free Software Foundation and GNU, I was hired by the
Unsteady Aerodynamics Laboratory of the National Research Council of Canada
to work with the data-acquisition system for their high-speed wind tunnel. At
that time, the lab had a specialized real-time minicomputer: a Hewlett-Packard
HP-1000 F series. Once a year, through the early- and mid-1980s, I would go to
the HP International Users Group conferences and return home with a
magnetic tape containing the contributions of the attendees. Mounting that
tape and looking through the index file, I felt like a kid unwrapping presents on
Christmas morning. This was my first exposure to source code sharing, and I
had no idea what the future would hold for such a simple concept.

Canadian National Ski Team Member in the 2m × 3m Tunnel

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

In 1990 I acquired my first UNIX box, a then state-of-the-art Silicon Graphics 4D/
80GT, along with my own T1 connection to the Internet. The switch from a small
real-time OS on a standalone computer to an IRIX-based networked machine
opened the door to a brave new world with a very steep learning curve. By
1992 I was writing Byzantine scripts that used combinations of shell, awk and
sed to manipulate wind tunnel data files. One day when I was on Usenet
looking for advice, someone mentioned Perl. I now wish that I had taken notice
of whoever it was so that I could thank them for making my life so much easier.
Within a year Perl had become indispensable on the SGI as well as on my
desktop Macintosh. It would become the most important piece of open-source
software at the laboratory.

About that time I experimented with a program that, although it seemed
somewhat useful, I underestimated rather badly at first. It was called Mosaic. A
short while later, I installed the NCSA's HTTPd and began to understand the
potential of the Web. In its later incarnation as Apache, it would become the
second largest OSS project upon which the lab depends daily.

The Institute for Aerospace Research was restructured in 1995, and after the
dust had settled I found myself at my current location: the 2 × 3 meter, low-
speed wind tunnel of the Aerodynamics Laboratory. At that time, I began
creating web-based software to extend the capabilities of the existing data
system that had relied on command-line and X Window System user interfaces
running under QNX and AIX. The decision to switch to browser-based programs
was due in large part to the type of clients coming to the tunnel. Even though
the bulk of our work is aircraft testing for companies such as Bombardier
Aerospace, over the past several years we have tested cars, buses, trucks,
motorcycles (my favorite), power lines, bridges, antennae, as well as Olympic
cyclists, skiers and bobsled teams. This wide variety of clients, with computer
skills that range from inept to adept, makes user-interface design challenging.
Since even management knows how to surf the Web, I decided to try a web-
based interface written in Perl on one of our applications. The feedback I
received was overwhelmingly positive due to the ease-of-use and high comfort
level experienced by our clients and staff, so I continued to build web-based
tools.

Vehicle Aerodynamics in the 2m x 3m Tunnel

The third significant OSS project to be adopted came several years later. In
1998 we purchased a 24-node Alpha/Linux Beowulf cluster for our
computational fluid dynamics group. This was a good project for evaluating
new technology because, although this task is much more computationally
intensive than the wind tunnel data system, it is not as critical on a daily basis
to the lab's clients. The success we experienced with this installation convinced
us that Linux was a viable alternative to the commercial operating systems we
had been using.

While these big pieces were falling into place, we also began using several
smaller OSS applications on a regular basis: Ghostscript, Xmgr, Vim and NEdit,
to name just a few.

The Present

In order to provide a context for the rest of this article, I'll describe a typical
aircraft experiment from the data-processing point of view. After a model is
installed in the wind tunnel it usually takes from one to five weeks to complete
a test. During that time up to 500,000 independent measurements will be
taken. This can result in the creation of as many as 2,000 X-Y plots, 4,000 disk
files and as much as 500MB of text data to be displayed on-screen. It is
imperative to have fast and simple methods of dealing with all this information.

The clients and test engineers of the laboratory have access to all of the
facility's data-acquisition, storage and visualization systems through Perl CGI
programs running under Apache (see Figure 1). Much of the control of the
experiment by the wind tunnel operators is also handled the same way. When
a user opens the web browser on any of the computers in the control room,
the wind tunnel client home page is automatically loaded. This page allows
access to the five web-based software tools I have written so far: plotting,
configuration file editing, data file viewing, event logging and the dynamic data
display (see Resources). In addition, there are also links to local resources such
as system documentation and a unit-conversion calculator, as well as to off-site
information. I'd like to point out that the laboratory uses a rather restrictive
intranet model that helps to alleviate some of the security concerns of running
web-based systems.

Figure 1. Block Diagram of the Web-Based Software

The plotting system was the first of the software tools to be developed, and as
such, was used as a proof-of-concept for the idea of providing clients of the
wind tunnel with access to their data through the Web. Since we were already
using a commercial data visualization package from Amtek Engineering called
Tecplot, I decided to build the plotting system around it. My software allows
users to set up plotting templates simply by selecting options and filling in text
boxes in an HTML form. These templates are used to generate Tecplot
command files that can be utilized immediately to produce plots either on-
screen in the browser or on paper. A dæmon program (also written in Perl) also
uses those same templates to produce paper plots automatically, at the end of
each wind tunnel run.

Spinning F18 Model in the Water Tunnel

Configuration file editing is accomplished through another web-based
program. It was created to provide a fast and simple method of modifying the
files that control the programs for acquiring and reducing the experimental
data. Users are shown a form where each line contains a parameter name with
either a text box or a select element to set its value. The Perl program that
generates these HTML forms also dynamically generates JavaScript code to
validate the user input before it is submitted. If any invalid entries are detected,
flashing arrows appear next to the input fields and a popup dialog box
describes the specific problems.

The data file viewer is a simple CGI program that searches through the disk
space for a given wind tunnel test. It creates an HTML button for each entry
found that matches our naming convention for data and configuration files.
These buttons are presented to the user in tables where each row corresponds
to one tunnel run and each column to a specific data type (e.g., raw, reduced,
tare, etc.). Each press of a button brings up a new browser window with the
contents of the selected file parsed and formatted for viewing. Then, users
have the option of downloading the file to their local computer in CSV, Matlab
or one of several other formats.

All of the new software and much of the legacy code generates status
messages—events that are handled by an event-logging system that consists of
two main parts. The first is a simple Perl dæmon that listens on a TCP/IP port
for messages and stores them in log files. The second part of the system is a
web-based viewer that allows users to search the log files for events that match
specific criteria such as time of occurrence, computer name, event severity
level, etc. Although this seems like a trivial application, it is indispensable
because the data-acquisition, manipulation and visualization system consists of
several computers running heterogeneous operating systems. Finding bugs in
this kind of distributed system (especially timing problems due to complex
interactions) is difficult if not impossible without a common event log.

Generic Fighter Aircraft Model in the 2m × 3m Tunnel

From the user's perspective, the dynamic data display system is the only
noninteractive software tool. It is based on a Perl server that accepts data

messages from the data-acquisition systems. Users can view these messages
by connecting to the server through a CGI program that uses nonparsed
headers (NPH) or “server push”. This program presents the user with a data
table and dynamically adds new information to the top of a table as it becomes
available. The old data is scrolled down and eventually goes off the end of the
table. While creating this code I was somewhat concerned about the
possibilities of memory leaks, not only in Perl or Apache, but also in our
browsers. I shouldn't have been. We have had individual NPH clients that have
remained continuously connected to the server throughout wind tunnel tests
that have lasted more than five weeks. During that time they displayed over
500MB of data with no problems.

Individually, each of these five tools works well enough but is hardly
revolutionary. When they are combined, however, they form a simple,
consistent and robust environment for our clients and staff to interact with
their experiment. There is no need to remember obscure commands, long data
paths, command key sequences or any of the other things associated with
many types of user interfaces. All users need to do is point and click and fill in
the blanks on web pages, something they know how to do and with which they
are comfortable.

The Future

The first thing on my to-do list is to finish moving the Perl code I've developed
off our last remaining SGI and onto a dual-processor Intel/Linux system.
Although getting the programs running in their current form is a trivial task, I'm
using the opportunity to refactor all of the code. There is also one software tool
that is partially developed and needs to be finished: the user interface to the
model attitude control system. In addition, we are considering changing our
data file format from an arcane system developed in-house to one using XML.
This will certainly result in the need for more new code.

Peering further into the future, I hope to have the time to develop some VRML
applications that create dynamic 3-D graphic simulations of the models and
probes in our wind tunnels, with superimposed load and pressure data. Also,
our instrumentation group is investigating using embedded/real-time Linux for
some of our data-acquisition needs.

With all of this work still to be done, I have no doubt that open-source software
will continue to play an increasingly important role in the day-to-day operation
of the Aerodynamics Laboratory.

Resources

https://secure2.linuxjournal.com/ljarchive/LJ/090/4835s1.html

Steve Jenkins is the senior programmer/analyst at the Aerodynamics
Laboratory of the Institute for Aerospace Research, National Research Council
of Canada and has over 20 years experience with data processing in aerospace
facilities.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/toc090.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux and Samba in a Federal Lab

Brian Gollsneider

Mike Martin

Issue #90, October 2001

Using Linux and Samba for research on extremely small lasers called VCSELs.

Linux and Samba recently answered the needs of the Army Research Lab (ARL)
at Adelphi, Maryland. Our branch does state-of-the-art research into a specific
type of lasers and amasses large amounts of data during the performance
testing of these devices. We were able to connect our test equipment over the
network to a Samba server. The twist to this approach is that our configuration
makes it appear to the users that they access the data through the branch's NT
fileserver. I'll explain the setup in detail, but the main trick is creating a network
shortcut on the NT box to point to the Samba share while making the Linux box
invisible on the network. Figure 1 depicts the setup of the network.

Figure 1. Network Setup

Our branch develops extremely small lasers called VCSELs (vertical-cavity,
surface-emitting lasers), which fall under the general category of photonics
research. We easily can put over 60 lasers into a square millimeter, and the full
wafer containing the lasers can be three inches in diameter. Therefore, we can
have thousands of devices on a single wafer. Figure 2 shows a picture of a
typical VCSEL. The main tests we run to characterize the performance of each
VCSEL are called ILV curves for current, light and voltage. Basically, we see how
much light comes out for the power that was put in. Also, most of the analysis
software is on the user's desktop machine so they need to be able to access the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/090/4881f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/090/4881f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/090/4881f1.large.jpg

raw data from there. Users are creatures of habit. Getting data pertinent to the
branch has historically meant going to the NT server. Since the users were used
to getting data from the NT box, we did not want to make them go somewhere
else. We tried to make everything transparent to the user and make it appear
as though they were getting the data from the NT server. To force the users to
go through the NT box, we make the Linux box invisible to the network. We rely
on the security of the NT box to authenticate users accessing the data.

Figure 2. Typical VCSEL: large rectangles are contact pads for the test probes. The actual
lasing area is the small gray square at bottom center.

Test Setup

Two pieces of equipment are key to characterizing the VCSELs. First is the
probe station that is basically just a microscope with some tiny probes and a
light meter. The probes apply the power to the device, and we measure the
power produced with the light meter. A 4155B parameter analyzer from Agilent
is the second piece of equipment. This analyzer is programmed to sweep the
current level and measure the voltage and light. It has two main ways of being
controlled: front panel and the GPIB interface. Granted, the GPIB port is a
popular scientific interface and allows us to do fancier tests by controlling the
test setup with a computer as well as collect the data, but our controlling
computer is about five feet down the lab bench and cannot be moved closer.
This makes it difficult to start the test when the probes are in place. Fortunately
our main test is simple to program through the front panel. Our test routine is
to position the probes by looking through the eyepiece of the microscope,
reach up carefully and push the test button on the parameter analyzer and
then save the data. Figure 3 shows the lab hardware.

Figure 3. Probe Station (bottom center) and 4155B Parameter Analyzer (White Box on top left)

Operation

After we get a clean run, we need to save the data. The 4155B has three ways to
save the data: GPIB, floppy and TCP/IP. Since we aren't controlling the analyzer
with the GPIB, that's not an option. The floppy supports 3.5" disks, but these
disks fill up quickly and you have to walk around with them. Since we have
several lab areas where we work, it's not unheard of to have to backtrack to
recover a temporarily misplaced disk. The answer we put together works
because of the TCP/IP support.

Linux

The parameter analyzer supports TCP/IP, specifically NFS. You can even ping
the analyzer. Since it's registered in the lab's DNS, the ping can be done by way
of IP address or name. We were able to put together a Linux box out of
obsolete or broken equipment. Literally, we pulled together parts of three
computers into one. It didn't cost the government anything, and it fills the
need. For the installation, the newest distribution that we had and that the
P-133 hardware would support is Red Hat 6.2, so we put that on and hardened
it with Bastille and the latest patches. Additionally, all the unnecessary services
were turned off and SSH was added. We sliced the hard drive space carefully
and ended up with about 1.5GB of space for data. Total time of install and
configuration was three hours.

NFS

Again, the parameter analyzer talks NFS, so the next step was configuring that.
The /etc/exports file needed just one line:

/home/guest/hptestdata 192.168.10.29(rw)

The hptestdata directory was created under guest's home directory, and nfsd
was restarted. This line allows only the one IP address to mount the directory.

Appropriate information was entered into the parameter analyzer's front panel
and the mount button pushed. Of course it didn't work the first time. After just
a minute of diagnosis, syncing the ID numbers on the analyzer to the guest
account solved the problem. Total time to configure NFS was less than five
minutes.

Samba

Samba is an amazing product that can do many things. This is a simple
application, and the /etc/smb.conf is shown in Listing 1.

Listing 1. /etc/smb.conf

Of course, crucial security information like network domain has been changed
in this and /etc/exports. The key parts in the file are creating the hptestdata
share and making it read-only. The read-only part is to prevent users from
accidentally deleting data. We periodically purge, but only after assurances
from all the users. The other part of Samba is modifying the boot-up files so
nmbd is killed. With the network configuration we are setting up, we don't want
to see the machine on the network. Therefore we don't want nmbd to provide
name services. See your distribution's documentation for the appropriate file to
configure. For Red Hat 6.2, we modified S91smb and commented out the nmbd
startup lines by placing a # at the beginning of the appropriate lines. To remind
myself of this network configuration, I also changed the echo line in the file to
say that smbd was not starting. Normally the script will output that nmbd is
starting. Access is restricted to our domain only so outside access is prevented.
Total time to configure was several hours of tweaking.

NT Setup

The final configuration step was on the NT box. We haven't seen this trick
anywhere else so we think it's pretty neat. We created a data share for the
Linux machine. This is where the users will go for data from their desktops.
Then we made a network shortcut using UNC (universal naming convention)
and put it into the data share. To be honest, to do this we made the Samba
share visible on the network for just a minute and created a shortcut in the
directory. It was easier for us to do that than fight getting the double
backslashes correct. When the user accesses the NT server, he or she sees the
shared folder. Double-clicking there shows a directory. Double-clicking on the
directory brings the user to the Linux box with the test data, without realizing it.
This trick is necessary because Windows cannot share out a network drive that
it has mounted. My original plan was to have the NT box map the Samba share
to a drive and then share that out. Total time to configure was five minutes,
after realizing that Windows can't share out a mapped drive and we employed
this trick.

https://secure2.linuxjournal.com/ljarchive/LJ/090/4881l1.html

Conclusion

Linux and Samba filled a requirement of the lab that couldn't be supported
otherwise. The method is transparent to the users because they go to the same
central place for data; it's as secure as the branch's NT server, and it was
literally built for free since we used 100% scavenged equipment.

Future

This scheme still suffers slightly from security. A savvy computer user could
look at the properties of the network shortcut and then use that to make a
shortcut directly to the Samba server, bypassing the NT security. An alternative
would be to use the Linux box and smbmount to mount a share from the NT
server and export that using NFS to the test device. We were able to mount the
NT share on the Linux box, export that with NFS and then mount that on the
4155B. The problem still remaining is writing to that share, even using options
with smbmount. Hopefully, in the near future we will have some time to tackle
this aspect again.

Resources

Brian Gollsneider is a student at the University of Maryland working on a PhD in
electrical engineering. He works with the researchers at the Army Research
Laboratory investigating VCSELs. Brian Gollsneider may be reached via e-mail at
gollsneb@glue.umd.edu.

Mike Martin is a student at the University of Maryland working on a BS in
electrical engineering. He works with the researchers at the Army Research
Laboratory investigating VCSELs.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/090/4881s1.html
mailto:gollsneb@glue.umd.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/toc090.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

At Your Service—Job Scheduling for Linux

Louis J. Iacona

Issue #90, October 2001

A simple command-line utility for planning and managing deferred program
executions.

Drawing from the communications world, services fall in one of two broad
categories, immediate or deferred. Immediate communication services include
teleconferencing, on-line chat, etc.; while deferred services include e-mail and
fax. This column presents an overview of the Linux at utility that allows for the
deferred (or scheduled) execution of a program.

Of course, most programs need to be launched in an immediate, do-it-now
mode. Still, it's often desirable and perhaps required to schedule the execution
of a program (or job, in ancient Geek) at a particular time for a variety of
practical reasons. Consider any of the following scenarios:

1. A development group has developed a script that rebuilds their source
tree and updates the application's staging area. The script is completely
mechanized, but it is very time- and CPU-intensive. As a practical matter,
the group decides this job should be scheduled to run in the late evening
when it would be competing with fewer users and processes.

2. A high-quality color printer/plotter is in high demand during regular
business hours. Multiple times a week, a project manager uses the printer
to reprint a quickly evolving project plan of 200+ pages. To avoid
monopolizing the printer during its peak usage period, the project
manager decides the print job should be run in the early morning—before
most users are active.

3. A project leader wants to distribute meeting reminder/agenda notes via e-
mail to participating staff members four hours before a meeting
scheduled for next Friday at 4:00 P.M.

4. A system administrator (SA) has been receiving reports of extremely poor
system performance at the start of the business day. The cause of the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

degrading performance is not obvious. Rather than comb through
numerous system logs, the SA decides to schedule the execution of a
program that captures system load information. The job is to be executed
the next day, every five minutes during the 9:00 A.M. hour.

5. An external data source used to update a local data warehouse becomes
available at 6:00 P.M. every Friday. If the lengthy update procedure does
not complete successfully, it's to be retried an hour later. Otherwise, it is
rescheduled for the next Friday.

The scheduling requirements outlined in each of the above scenarios can be
addressed by the at utility. Furthermore, these scenarios represent a broad
range of the most common applications for at. The at utility is ideal for
performing CPU-intensive tasks when little user-processing demand is present
on the system, utilizing scarce resources at a time when they're generally more
available, distributing reminders at a specific time, executing jobs that need to
run at a time when the user has no intention of being actively connected to the
system and executing jobs that are dependent on resources becoming
available at a specific time.

at's Features

at is actually a collection of related programs that allow Linux users to schedule
and manage the execution of deferred jobs. If you're thinking at is only suitable
for noninteractive tasks, you are correct. Programs scheduled through at are
expected to be capable of running as background processes, since at does not
associate user-display devices with executing jobs. Users generally find the at
command-line interface to be quite intuitive. Yet, it is expressive enough to
meet any conceivable scheduling requirement. Before presenting examples of
the command-line interface, let's summarize the basic services provided by at.
It allows for scheduling the execution of a job at a specific time/date, displaying
information about jobs currently scheduled, canceling a job currently
scheduled and administrating the list of users that have permission to use at
programs.

Using at

The examples presented here assume you have a basic familiarity with shell
command execution and Bourne shell syntax. Each of the examples were
tested on a Red Hat Linux 7 (2.3 kernel) platform. However, I would expect the
examples to work as presented on all common distributions.

Obviously, the most fundamental capability offered by at is that of scheduling
the execution of a program at some later time. Generally installed at /usr/bin/
at, the basic command-line syntax for the at program is as follows:

at [options] TIME [DATE] < bourne-shell-file

This syntax implies the following alternate ways of invoking at would work as
well:

cat bourne-shell-file | at [options] TIME [DATE]
at [options] TIME [DATE]
Anything normally accepted by the bourne shell
interpreter will be accepted. Terminate with
Ctrl-D (^d)
statement 1
statement 2
statement 3
statement 4
^d

The first significant detail here is the proper notation for the time and date. The
date is always optional. When it's omitted from the command line, the date is
assumed to be the next day the specified time will occur, that is, either today or
tomorrow. For example, if the time is specified as 1:30 P.M. and it's already 4:30
P.M., the job will be scheduled for the next day at 1:30 P.M. at accepts a time/
date notation that extends the POSIX.2 standards. That notation may be
documented on your installation under the /usr/doc directory in a file called
timespec.

Let's learn through some examples. The time/date specification examples in
Table 1 will give you a good idea of what the at program will accept.

Table 1. Possible Time/Date Entries

As shown, the at program accepts a fairly rich and intuitive notation. It attempts
to interpret the time/date specified by parsing its command-line arguments
from left to right. If its time/date specification is violated, a “Garbled time” error
diagnostic is displayed< and the program terminates. It usually provides a terse
hint as to why it became troubled. For example, review the following invocation
attempt below:

$ at 6am Mar 32
Error in day of month. Last token seen: 32
Garbled time
$

The following invocation succeeds at scheduling a job. Consider the third usage
scenario outlined above for this submission:

$ at 1pm friday
warning: commands will be executed using /bin/sh
 STAFF="moe larry curly"
 cd mail
 mail -s"Meeting Reminder" $STAFF < friday_agenda.txt
 ^d
job 6 at Fri Apr 13 13:00:00 2001
$

https://secure2.linuxjournal.com/ljarchive/LJ/090/4719t1.html

If you're following closely, some questions should begin to formulate. Do the
standard output and standard error streams of a scheduled job get captured
somewhere? All standard output and standard error diagnostics are captured
by the at service (/usr/sbin/atd program) and e-mailed to the submitting user
when the scheduled job finishes. The e-mail will appear with a subject heading
such as the following:

Subject: Output from your job 17

Are we limited to scheduling Bourne shell scripts? As the feedback from the
example above indicates, at uses the system Bourne shell program (/bin/sh) to
interpret the user-provided program statements. Therefore, anything you
would type at a Bourne shell prompt would be valid, including a Bourne shell
script or the launch of any executable found in your environment, even a
different language interpreter. Review the following example for scheduling the
execution of a Perl script:

$ at 6pm tomorrow
warning: commands will be executed using /bin/sh
 perl /home/moe/perls/script1.pl
 ^d
job 28 at Wed Apr 18 18:00:00 2001
$

What system users/groups get assigned to the scheduled process? What
attributes of the job submission environment are preserved and carried over
into the job execution environment? Discovering how a utility provides a service
behind the curtains is usually not of interest to most users. In the case of at,
however, an actual example of what the utility does is fairly simple to follow
and shows what's possible, what isn't and why. Every scheduled job results in a
generated Bourne shell script placed under the /var/spool/at/ directory. These
generated scripts are comprised of the following sections:

• Program comments that provide some clues as to which user is notified
when the job completes. Also, the effective user and group ID assigned to
the job is specified.

• umask setting dictates how new files/directories should be created.
• A full listing of environment variable assignments at the time the job was

submitted (except those related to display devices, such as TERM and
DISPLAY).

• The current directory changes to where the user was when the task was
scheduled. If that directory does not exist when the job executes, the job
aborts and an e-mail notification is sent.

• An appended copy of the program text that was submitted to at.

With this in mind, Listing 1 is an abbreviated example of a script generated on
behalf of a job scheduled by our user Moe. To complete our command-line
interface description of the at program, see Table 2 for some of its more useful
command-line options.

Listing 1. Sample—Moe's Job

Table 2. Command-Line Options

The following is another example of scheduling a job with at:

$ at -mf /home/curly/shells/program1 6pm tomorrow
warning: commands will be executed using /bin/sh
job 29 at Thu Apr 12 18:00:00 2001
$

Two other programs are tied to the basic at program: atq and atrm. As you
might guess, atq lists jobs currently scheduled while atrm cancels one or more
specified jobs. While the root user is capable of viewing and canceling any and
all jobs, nonroot users can only view and cancel what they schedule.

Listing 2 shows an example of the output displayed by atq, as viewed by the
root user (I inserted the field labels for better readability—unfortunately the
Linux implementation of atq does not provide them).

Listing 2. Sample atq Output

Rank is a unique sequence value used to identify scheduled jobs to other at
programs. In addition to the scheduled time and the submitting user, a queue
value is listed. Unless the user specified otherwise, jobs are placed on the “a”
queue. (Reference the on-line manual page for the implications of specifying an
alternate queue value to the at program—it essentially controls the runtime
priority of the job.) atq qualifies currently running jobs with a “=” value in the
queue field. So job 17, seen in Table 3, is currently executing.

What if a user submits a job and then realizes either the time and/or program is
incorrect? The atrm utility can be used to remove one or more scheduled jobs.
For example, the root user could cancel the first and second jobs listed in Table
3 with the following command:

atrm 18 19

atrm provides no feedback. A subsequent atq listing would then display a
queue like the one in Listing 3.

Listing 3. Revised Sample atq Output

https://secure2.linuxjournal.com/ljarchive/LJ/090/4719l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4719t2.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4719l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4719l3.html

Administering at

If your attempt to use one of the at programs produces the following
diagnostic: “You do not have permission to use at”, you need to contact your
local SA. Linux SAs can manage at with a fair amount of flexibility.

As you might expect, the root user has absolute permission to use the at utility
and can grant the same permission to nonroot users. Two system files, /etc/
at.allow and /etc/at.deny, control access to the at utility. Table 3 shows how
their presence and content determines users' permission on a given system.

Table 3. Controlling User Access to at

Note that if the /etc/at.allow files exist, /etc/at.deny is completely ignored.
Users are identified in both files by their Linux login, each appearing on a
separate line. at does not provide a command-line utility to control the content
of these files. SAs generally select their favorite text editor and manually edit
the files as needed. This hardly can be considered a shortcoming, though, given
the likely infrequency of change.

To summarize, nonroot users can be explicitly or implicitly assigned or denied
permission to use at. SAs either can choose to manage access to at by exclusion
or inclusion. Select the approach that makes the most sense for your particular
installation. For example, a highly sensitive production site probably should be
managed based on inclusion (i.e., nonroot users do not have permission unless
it's explicitly granted—the /etc/at.allow file exists). Conversely, the Linux default
configuration might be fine for most development/test environments (i.e.,
nonroot users have permission unless it's explicitly denied—/etc/at.allow does
not exist and /etc/at.deny has zero or more entries).

Conclusion

Collectively, the at programs offer an intuitive way to manage the deferred
execution of applications. Despite its simplicity and usefulness, the at utility is
often ignored by Linux administrators and developers. Other less frequently
used at command-line options exist that I chose not to cover here. I encourage
you to review the at manual page by typing man at at your favorite shell's
prompt to review all details. Also, most Linux overview books provide some
coverage of at and similar programs, such as O'Reilly's Linux in a Nutshell by
Ellen Siever, et. al.

Miscellaneous at Facts

https://secure2.linuxjournal.com/ljarchive/LJ/090/4719t3.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4719s1.html

Louis J. Iacona (lji@omnie.com) has been designing and developing applications
on Linux/UNIX since 1982. He is currently a senior staff member of OmniE Labs,
Inc. (www.omnie.com).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.omnie.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/toc090.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

How to Write a Linux USB Device Driver

Greg Kroah-Hartman

Issue #90, October 2001

Greg shares his USB driver skeleton and shows how it can be customized for
your specific device.

The Linux USB subsystem has grown from supporting only two different types
of devices in the 2.2.7 kernel (mice and keyboards), to over 20 different types of
devices in the 2.4 kernel. Linux currently supports almost all USB class devices
(standard types of devices like keyboards, mice, modems, printers and
speakers) and an ever-growing number of vendor-specific devices (such as USB
to serial converters, digital cameras, Ethernet devices and MP3 players). For a
full list of the different USB devices currently supported, see Resources.

The remaining kinds of USB devices that do not have support on Linux are
almost all vendor-specific devices. Each vendor decides to implement a custom
protocol to talk to their device, so a custom driver usually needs to be created.
Some vendors are open with their USB protocols and help with the creation of
Linux drivers, while others do not publish them, and developers are forced to
reverse-engineer. See Resources for some links to handy reverse-engineering
tools.

Because each different protocol causes a new driver to be created, I have
written a generic USB driver skeleton, modeled after the pci-skeleton.c file in
the kernel source tree upon which many PCI network drivers have been based.
This USB skeleton can be found at drivers/usb/usb-skeleton.c in the kernel
source tree. In this article I will walk through the basics of the skeleton driver,
explaining the different pieces and what needs to be done to customize it to
your specific device.

If you are going to write a Linux USB driver, please become familiar with the
USB protocol specification. It can be found, along with many other useful
documents, at the USB home page (see Resources). An excellent introduction to
the Linux USB subsystem can be found at the USB Working Devices List (see

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Resources). It explains how the Linux USB subsystem is structured and
introduces the reader to the concept of USB urbs, which are essential to USB
drivers.

The first thing a Linux USB driver needs to do is register itself with the Linux
USB subsystem, giving it some information about which devices the driver
supports and which functions to call when a device supported by the driver is
inserted or removed from the system. All of this information is passed to the
USB subsystem in the usb_driver structure. The skeleton driver declares a
usb_driver as:

static struct usb_driver skel_driver = {
 name: "skeleton",
 probe: skel_probe,
 disconnect: skel_disconnect,
 fops: &skel_fops,
 minor: USB_SKEL_MINOR_BASE,
 id_table: skel_table,
};

The variable name is a string that describes the driver. It is used in
informational messages printed to the system log. The probe and disconnect
function pointers are called when a device that matches the information
provided in the id_table variable is either seen or removed.

The fops and minor variables are optional. Most USB drivers hook into another
kernel subsystem, such as the SCSI, network or TTY subsystem. These types of
drivers register themselves with the other kernel subsystem, and any user-
space interactions are provided through that interface. But for drivers that do
not have a matching kernel subsystem, such as MP3 players or scanners, a
method of interacting with user space is needed. The USB subsystem provides
a way to register a minor device number and a set of file_operations function
pointers that enable this user-space interaction. The skeleton driver needs this
kind of interface, so it provides a minor starting number and a pointer to its
file_operations functions.

The USB driver is then registered with a call to usb_register, usually in the
driver's init function, as shown in Listing 1.

Listing 1. Registering the USB Driver

When the driver is unloaded from the system, it needs to unregister itself with
the USB subsystem. This is done with the usb_unregister function:

static void __exit usb_skel_exit(void)
{
 /* deregister this driver with the USB subsystem */
 usb_deregister(&skel_driver);
}
module_exit(usb_skel_exit);

https://secure2.linuxjournal.com/ljarchive/LJ/090/4786l1.html

To enable the linux-hotplug system to load the driver automatically when the
device is plugged in, you need to create a MODULE_DEVICE_TABLE. The
following code tells the hotplug scripts that this module supports a single
device with a specific vendor and product ID:

/* table of devices that work with this driver */
static struct usb_device_id skel_table [] = {
 { USB_DEVICE(USB_SKEL_VENDOR_ID,
 USB_SKEL_PRODUCT_ID) },
 { } /* Terminating entry */
};
MODULE_DEVICE_TABLE (usb, skel_table);

There are other macros that can be used in describing a usb_device_id for
drivers that support a whole class of USB drivers. See usb.h for more
information on this.

When a device is plugged into the USB bus that matches the device ID pattern
that your driver registered with the USB core, the probe function is called. The
usb_device structure, interface number and the interface ID are passed to the
function:

static void * skel_probe(struct usb_device *dev,
unsigned int ifnum, const struct usb_device_id *id)

The driver now needs to verify that this device is actually one that it can accept.
If not, or if any error occurs during initialization, a NULL value is returned from
the probe function. Otherwise a pointer to a private data structure containing
the driver's state for this device is returned. That pointer is stored in the
usb_device structure, and all callbacks to the driver pass that pointer.

In the skeleton driver, we determine what end points are marked as bulk-in and
bulk-out. We create buffers to hold the data that will be sent and received from
the device, and a USB urb to write data to the device is initialized. Also, we
register the device with the devfs subsystem, allowing users of devfs to access
our device. That registration looks like the following:

/* initialize the devfs node for this device
 and register it */
sprintf(name, "skel%d", skel->minor);
skel->devfs = devfs_register
 (usb_devfs_handle, name,
 DEVFS_FL_DEFAULT, USB_MAJOR,
 USB_SKEL_MINOR_BASE + skel->minor,
 S_IFCHR | S_IRUSR | S_IWUSR |
 S_IRGRP | S_IWGRP | S_IROTH,
 &skel_fops, NULL);

If the devfs_register function fails, we do not care, as the devfs subsystem will
report this to the user.

Conversely, when the device is removed from the USB bus, the disconnect
function is called with the device pointer. The driver needs to clean any private

data that has been allocated at this time and to shut down any pending urbs
that are in the USB system. The driver also unregisters itself from the devfs
subsystem with the call:

/* remove our devfs node */
devfs_unregister(skel->devfs);

Now that the device is plugged into the system and the driver is bound to the
device, any of the functions in the file_operations structure that were passed to
the USB subsystem will be called from a user program trying to talk to the
device. The first function called will be open, as the program tries to open the
device for I/O. Within the skeleton driver's open function we increment the
driver's usage count if it is a module with a call to MODULE_INC_USE_COUNT.
With this macro call, if the driver is compiled as a module, the driver cannot be
unloaded until a corresponding MODULE_DEC_USE_COUNT macro is called. We
also increment our private usage count and save off a pointer to our internal
structure in the file structure. This is done so that future calls to file operations
will enable the driver to determine which device the user is addressing. All of
this is done with the following code:

/* increment our usage count for the module */
MOD_INC_USE_COUNT;
++skel->open_count;
/* save our object in the file's private structure */
file->private_data = skel;

After the open function is called, the read and write functions are called to
receive and send data to the device. In the skel_write function, we receive a
pointer to some data that the user wants to send to the device and the size of
the data. The function determines how much data it can send to the device
based on the size of the write urb it has created (this size depends on the size
of the bulk out end point that the device has). Then it copies the data from user
space to kernel space, points the urb to the data and submits the urb to the
USB subsystem (see Listing 2).

Listing 2. The skel_write Function

When the write urb is filled up with the proper information using the
FILL_BULK_URB function, we point the urb's completion callback to call our own
skel_write_bulk_callback function. This function is called when the urb is
finished by the USB subsystem. The callback function is called in interrupt
context, so caution must be taken not to do very much processing at that time.
Our implementation of skel_write_bulk_callback merely reports if the urb was
completed successfully or not and then returns.

The read function works a bit differently from the write function in that we do
not use an urb to transfer data from the device to the driver. Instead we call the

https://secure2.linuxjournal.com/ljarchive/LJ/090/4786l2.html

usb_bulk_msg function, which can be used to send or receive data from a
device without having to create urbs and handle urb completion callback
functions. We call the usb_bulk_msg function, giving it a buffer into which to
place any data received from the device and a timeout value. If the timeout
period expires without receiving any data from the device, the function will fail
and return an error message (see Listing 3).

Listing 3. The usb_bulk_msg Function

The usb_bulk_msg function can be very useful for doing single reads or writes
to a device; however, if you need to read or write constantly to a device, it is
recommended to set up your own urbs and submit them to the USB
subsystem.

When the user program releases the file handle that it has been using to talk to
the device, the release function in the driver is called. In this function we
decrement the module usage count with a call to MOD_DEC_USE_COUNT (to
match our previous call to MOD_INC_USE_COUNT). We also determine if there
are any other programs that are currently talking to the device (a device may be
opened by more than one program at one time). If this is the last user of the
device, then we shut down any possible pending writes that might be currently
occurring. This is all done with:

/* decrement our usage count for the device */
--skel->open_count;
if (skel->open_count <= 0) {
 /* shutdown any bulk writes that might be
 going on */
 usb_unlink_urb (skel->write_urb);
 skel->open_count = 0;
}
/* decrement our usage count for the module */
MOD_DEC_USE_COUNT;

One of the more difficult problems that USB drivers must be able to handle
smoothly is the fact that the USB device may be removed from the system at
any point in time, even if a program is currently talking to it. It needs to be able
to shut down any current reads and writes and notify the user-space programs
that the device is no longer there (see Listing 4).

Listing 4. The skel_disconnect Function

If a program currently has an open handle to the device, we only null the
usb_device structure in our local structure, as it has now gone away. For every
read, write, release and other functions that expect a device to be present, the
driver first checks to see if this usb_device structure is still present. If not, it
releases that the device has disappeared, and a -ENODEV error is returned to
the user-space program. When the release function is eventually called, it
determines if there is no usb_device structure and if not, it does the cleanup

https://secure2.linuxjournal.com/ljarchive/LJ/090/4786l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4786l4.html

that the skel_disconnect function normally does if there are no open files on
the device (see Listing 5).

Listing 5. Cleanup

This usb-skeleton driver does not have any examples of interrupt or
isochronous data being sent to or from the device. Interrupt data is sent almost
exactly as bulk data is, with a few minor exceptions. Isochronous data works
differently with continuous streams of data being sent to or from the device.
The audio and video camera drivers are very good examples of drivers that
handle isochronous data and will be useful if you also need to do this.

Writing Linux USB device drivers is not a difficult task as the usb-skeleton driver
shows. This driver, combined with the other current USB drivers, should
provide enough examples to help a beginning author create a working driver in
a minimal amount of time. The linux-usb-devel mailing list archives also contain
a lot of helpful information.

Resources

Greg Kroah-Hartman is one of the Linux kernel USB developers. His free
software is being used by more people than any closed-source projects he has
ever been paid to develop.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/090/4786l5.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4786s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/toc090.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Data Modeling with Alzabo

Reuven M. Lerner

Issue #90, October 2001

Reuven takes a detour this month and shows you how to bridge the object-
relational gap.

Over the last few months, we have been looking at server-side Java
programming from a variety of perspectives. From servlets to JSPs to the
Enhydra application server, we've seen several different ways to create
dynamic, database-driven web sites using open-source Java technologies.

I had originally planned to continue in that vein this month, looking at
Enhydra's intriguing DODS object-to-relational modeling software. DODS
provides a high-level Java abstraction layer for tables in a relational database.
DODS methods are translated automatically into the appropriate SQL, which is
then handed to the database. The result: you see Java objects and methods,
your database sees tables and SQL, and everyone is happy.

Unfortunately, the help and goodwill expressed by folks at Lutris (the corporate
backer of Enhydra) were no match for the Israeli customs service and our local
branch of FedEx. The CD and book with additional explanations of DODS sit in a
warehouse as I write this, forcing me to take a short detour from my original
plan.

However, investigating DODS for this month's article revived my interest in the
subject of object-relational mappings. One of the most interesting and easy-to-
use tools that I've seen for this purpose is Alzabo, a set of Perl modules that
allows server-side Perl programmers to wrap their relational database
schemata inside of an object. (The project is named for a creature in the
science fiction work of Gene Wolfe.) I was quite impressed by what I saw and
believe that many Perl programmers will be equally happy to discover such a
powerful tool.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The Problem

Programmers have reaped many benefits by working with objects, from
reusability to inheritance to encapsulation. But while programmers have taken
to object-oriented programming in droves, object databases have been less
popular for a variety of reasons. Instead, relational databases have become
increasingly popular over the last few years, with huge quantities of data being
placed within them. The problem, then, is how we can model our data as
objects, while storing them as tables.

One possibility is to model each table as a class, each table column as an
instance variable and each table row as an instance of that class. But anyone
who has tried this quickly discovers it is easier said than done, particularly
when creating web applications—how can we join two tables? What happens
when two programs modify the same row in memory and only later commit
those changes to the database? How can we ensure that changes to our class
definition are reflected in the database and vice versa?

Another possibility is to read an entire table into an object instance, modifying
the object and writing it out when a particular method is invoked. This works
pretty well for small tables, but what happens when your tables become
several megabytes (or gigabytes or terabytes) in size? Your boss might be
willing to buy more memory for the web server but not if you're wasting it all
reading entire tables into memory! Besides, modeling tables inside of your
object means you also have to create a decent locking mechanism, complete
with commits and rollbacks—something that most programmers are equipped
to do.

We can easily dismiss these problems when working on a small application. But
as applications and databases scale up, we want to ensure that things will work
as expected. This is particularly true when creating an object-to-relational
mapping system, such as Alzabo. One of my employees and I created a simple
object-to-relational mapping middleware layer last year and were very happy
with what we had done—until we found that we hadn't taken nearly enough
corner cases into account, ending up with a mess of exceptions and default
values.

Luckily for the Perl programmers among us, Dave Rolsky took the time to sit
down and map out all of these problems, as well as many others. Alzabo gives
us an object-oriented middleware layer that removes our need to interact
directly with a database.

But Alzabo does more than provide a high-level interface to your database. It
also gives you a programmatic way to modify your database schema
definitions, including a browser-based table creation and maintenance tool that

creates SQL for you automatically. Moreover, Alzabo can take an existing
database and reverse-engineer it, allowing you to use Alzabo with existing
databases as well as new ones.

Installing Alzabo

Like most Perl modules, Alzabo is available for download from CPAN. However,
installing Alzabo can be more complicated than other modules, simply because
Alzabo depends on many modules. Not only does Alzabo require the use of DBI
(for database access) and either DBD::mysql or DBD::Pg (for PostgreSQL), but
the browser-based schema-creation tool uses HTML::Mason, which in turn
requires mod_perl. If all of these are installed on your system, then installing
Alzabo should be relatively straightforward.

I was able to install Alzabo without too much difficulty, using the CPAN modules
to download and install automatically each of the prerequisites and then
Alzabo itself.

I accepted the default values for almost all of the questions asked during the
software's configuration and installation, with the exception of the .mhtml
suffix that Alzabo assumes you use for Mason components. I normally give
Mason components the simple .html suffix; because my Apache configuration
didn't know what to do with the .mhtml extension, it sent them as Content-type
text/plain, displaying the Mason component's source code in my browser
window. Changing the suffix of the installed Mason components to .html
worked on my computer, but I could have modified my Mason or Apache
configuration just as easily.

Alzabo tracks each schema in its own directory, called /usr/local/alzabo by
default. Inside of this directory is a schemata directory, with a single
subdirectory for each of the database schemata that Alzabo is modeling. For
example, the appointments schemata would be in /usr/local/alzabo/schemas/
appointments.

There were two small hitches in my Alzabo installation that I had to fix. First, I
had to change the permissions /usr/local/alzabo so that my web user could
read and write to it. Secondly, I had to modify my PostgreSQL startup script to
include the -i option, so that clients could connect via the network. By default,
most PostgreSQL installations (including RPM versions) do not turn on -i,
meaning that even the most liberal configuration in pg_hba.conf (the
PostgreSQL host access control file) will fail to work. While you normally can
connect to PostgreSQL without the network using UNIX sockets, Alzabo always
specifies a hostname, which in turn requires a network connection even on the
local computer.

To install the web-based schema generator, at least one directory under your
Apache server must be controlled by HTML::Mason. The Alzabo installation
script will create a new/alzabo subdirectory there, along with the Mason
components that create and modify the schema definitions that you create. My
workstation, for instance, has all of its Mason components in /usr/local/apache/
mason, which is mapped to URLs beginning with /mason. The web part of my
Alzabo installation is thus in /usr/local/apache/mason/alzabo, accessible via the
URL /mason/alzabo. If you have not done so already, you may wish to tell
Apache (via the DirectoryIndex directive) that index.mhtml is an acceptable
index page for a directory.

Editing Schemas

Now that we have installed Alzabo, let's create a simple database schema using
the browser-based design tool. Admittedly this is not as slick as commercial or
client-side tools, but it does the job rather well.

Begin by creating a new schema (known in PostgreSQL and MySQL parlance as
a database) to which you must give a name. The schema must be a legitimate
database name within either PostgreSQL or MySQL. I choose to work with
PostgreSQL because of its built-in referential integrity, foreign keys, views and
triggers, as well as a more standard dialect of SQL and the ability to write
stored procedures in a variety of languages.

Let's create a simple phone book and appointment calendar using Alzabo. We
will keep track of people we know, their addresses and telephone numbers,
and appointments we have scheduled with them. Using this database, we can
learn about the people with whom we're meeting on a given day or about all of
the appointments with a given person.

To create this schema, we point our web browser at the URL alzabo/schema
under the Mason directory we mentioned earlier (on my computer, I pointed
the browser to http://localhost/mason/alzabo/schema.) This brings up the
schema creation/editing page that allows us to edit an existing schema, create a
new one or reverse-engineer an existing one. While the last option is the most
interesting, allowing you to access legacy databases using Alzabo, we will create
a new schema. I entered the name (I chose addressbook, for lack of a better
idea) and indicated that we wish to use PostgreSQL as our back-end database.

After clicking on “submit”, several possibilities were presented: I could add a
new table to this schema, delete the entire schema or examine the SQL that
Alzabo will generate automatically. Right now, of course, there isn't any SQL to
display. Over time, we will see this SQL grow considerably.

However, because Alzabo has not created any SQL doesn't mean that no work
has been done on the back end. Indeed, Alzabo automatically created the
addressbook directory within /usr/local/alzabo/schemas, containing three files:
addressbook.create.alz and addressbook.runtime.alz (both are stored in a
binary format) and addressbook.rdbms, which contains the single word
PostgreSQL. In this way, Alzabo tracks the database server in which the schema
is stored.

Once inside the addressbook schema, I added a “People” table by entering
“People” in the “add a table” text field and clicking on “submit”. (PostgreSQL
ignores case in table and column names, but I like Joe Celko's convention of
initial caps for Table Names, all lowercase for column names and all caps for
SQL RESERVED WORDS.)

Within my People table, I created columns, each of a different data type. Alzabo
offers a menu of potential data types, but we can enter our own if we want; this
can be particularly useful in PostgreSQL, which allows us to create our own
data types.

I generally prefer to work with synthetic primary keys in such a table, giving
each row its own value. In PostgreSQL, we accomplish this using the SERIAL
data type. But you will notice that no such data type exists in the Alzabo
selection list. You might be tempted to indicate that this is an INTEGER column
and to mark the “sequenced” check box at the bottom of the column editor.
Doing so, however, will create an INTEGER column, as well as a totally unrelated
PostgreSQL sequence object. Rather, to get a synthetic primary key you must
manually enter SERIAL in the text field below the <select> list of column types.

An additional check box lets you indicate if a column is the primary key and
automatically marks it with “pk” in column listings. And a third check box allows
you to indicate if a column may contain NULL values, a subtle way of reminding
new database designers that NULLs complicate life and should be avoided
whenever possible.

To create a foreign key (REFERENCES) or CHECK clause, add it in the “attributes”
text fields toward the bottom of the HTML form. Remember that you're only
modeling the schema in Perl at this point, meaning that you will be free to add
and remove such clauses in the future without having to send ALTER TABLE
queries to the database. You also can create indices on one or more columns
using the Alzabo editor.

You can use the Alzabo table and column editors to create many tables and
columns, moving between them using a set of hierarchical menus and listings.

The Alzabo display even places “<” and “>” marks next to each column, allowing
you to move them relative to each other within a particular definition.

As you work with the browser-based schema editor, I suggest that you
occasionally preview the SQL that Alzabo generates. Not only will this ensure
that Alzabo is doing the right thing (as we saw with the SERIAL column), but it
will give you a better sense of the low-level details your schema is creating.

After you have finished creating the schema, use the “execute SQL” button from
within the “SQL preview” page to send your SQL to the database server. If the
database server returns any errors, Alzabo will produce a lengthy and detailed
error message describing what happened.

In some cases, you may need to fix your table or column definitions, while in
others you may need to ensure that the server is running with the correct
permissions. Also ensure that you have defined a PostgreSQL user (created
with the command-line createuser program) whose name matches the
username under which Apache runs, unless you explicitly name another user in
the HTML form.

Using Our Schema from a Program

Once you execute the SQL from within the schema editor, you have two ways to
access the data. You may, of course, access it directly using DBI (or a similar
interface from another language), creating and executing SQL queries.

For example, let's assume that I have created my addressbook schema with the
following table:

CREATE TABLE People (
 person_id SERIAL NOT NULL,
 first_name TEXT NOT NULL,
 last_name TEXT NOT NULL,
 birthday DATE NOT NULL,
 PRIMARY KEY(person_id)
);

In order to make things a bit more interesting, let's populate our table with
some values:

INSERT INTO People (first_name, last_name, birthday)
VALUES ('Reuven', 'Lerner',
'1970-Jul-14');
INSERT INTO People (first_name, last_name, birthday)
VALUES ('Atara Margalit', 'Lerner-Friedman',
 '2000-Dec-16');

Listing 1 contains a simple Perl program that uses DBI to retrieve the names
(and birthdays) of people in our addressbook who match the SQL pattern
entered on the command line. (SQL patterns are much simpler than UNIX

regular expressions—there are only two characters: % matches zero or more
characters and _ matches exactly one character.)

Listing 1. retrieve-today-birthday.pl, which uses DBI to retrieve the names of
people in our addressbook table whose birthdays are today.

We retrieve the user's input on the command line and place % signs before and
after it to ensure that the string will match, regardless of where it occurs in the
first_name or last_name column. Then we connect to the database, turning on
AutoCommit (as the DBI documentation encourages us to do) and activating
the RaiseError and PrintError diagnostic aids.

Finally, we create our SQL query in the $sql variable, making sure to use
placeholders (“?”) instead of directly interpolating variables. Not only does this
reduce the risk of someone messing with our SQL, but some database drivers
will take advantage of our placeholders in subsequent queries, giving us a
speed boost.

Rewriting in Alzabo

Let's rewrite this program using Alzabo instead of straight DBI. We won't write
the SQL ourselves or connect to the database ourselves. Rather, we will create
a new schema object, naming the schema that we created with Alzabo's
interactive tool. This object has a number of methods that let us perform many
of the tasks for which we would otherwise use DBI.

As you can see from Listing 2, there are not many differences between the two
versions until we connect to the data source. In the DBI version of the program,
we connected to the data source itself with DBI->connect. In Alzabo, however,
we connect to a schema, which is presumably attached to a database, and
assign it to the object $schema.

Listing 2. retrieve-birthday-alzabo.pl, an Alzabo implementation of the program
in Listing 1.

Using $schema, we retrieve a table object associated with one of our tables:

my $people = $schema->table("People");

Now that we have an object mapped to our People table, we can retrieve
selected rows from the table. The easiest way to retrieve rows is with the
rows_where method. This returns a single object of type
Alzabo::Runtime::RowCursor:

my $row_cursor =
 $people->rows_where

https://secure2.linuxjournal.com/ljarchive/LJ/090/4887l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4887l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4887l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/4887l2.html

 (where => [[$people->column('first_name'),
 'LIKE', $look_for_name],
 'or',
 [$people->column('last_name'),
 'LIKE',
 $look_for_name]]);

Alzabo's WHERE clauses usually consist of a three-element list: a column object,
a comparison operator and a value or second column object. We can compare
the first_name column for equality with Zaphod with:

where => [$table->column('first_name'), '=',
'Zaphod']

In Listing 2, we have made this a bit more complicated, linking two array
references with the OR boolean operator:

where => [[$people->column('first_name'),
 'LIKE', $look_for_name],
 'or',
 [$people->column('last_name'),
 'LIKE', $look_for_name]]

Alzabo is smart enough to realize that the first and third elements of its WHERE
clause are array references, and it turns the above code into the appropriate
SQL.

Once we have our RowCursor object, we iterate through each row with the
next_row method:

while (my $row = $row_cursor->next_row)
{
 my $first_name = $row->select('first_name');
 my $last_name = $row->select('last_name');
 my $birthday = $row->select('birthday');
 print "$first_name $last_name
 (birthday: $birthday)\n";
 $rows_returned++;
}

Caches and Exceptions

If Alzabo simply provided a set of methods that create SQL, it wouldn't be a
very powerful tool. However, Alzabo provides caching and exception-handling
as part of its suite of tools, making it easier in some ways to work with
databases.

Alzabo's caching functionality keeps a table in memory rather than returning to
the database server each time we request a value from it. Obviously, caching
isn't appropriate for tables that change on a regular basis, but for tables that
rarely change, you can activate the cache and enjoy a nice boost in speed.

You can activate caching by loading the Alzabo::ObjectCache module in your
program. The RowCursor object, which we used to retrieve rows in Listing 2,
returns Row objects with each iteration of the next_row method. See the
documentation for Alzabo::Runtime::Row and Alzabo::ObjectCache for

information about the different kinds of caches available to you, as well as the
issues associated with them.

Alzabo also uses Perl's built-in exception-handling system, meaning that it
invokes “die” if something goes wrong. Therefore, you should wrap your
Alzabo-using programs (or individual calls within them) in “eval” blocks:

Try to run this code
eval {
 my $row_cursor =
 $people->rows_where(
 where => [[$people->column('first_name'),
 'LIKE', $look_for_name],
 'or',
 [$people->column('last_name'),
 'LIKE',
 $look_for_name]]);
};

You can find out if something went wrong by checking the special Perl variable
$@, which is set if an error occurs within the previous eval. But Alzabo uses the
Exception::Class object (available from CPAN) for more sophisticated exception-
handling in Perl. The $@ variable isn't set to a text string describing the error,
rather it is set to an instance of the appropriate exception class. You can thus
test $@ with UNIVERSAL::isa to determine just what kind of object it is and what
kind of problem occurred within your code. The Mason component common/
exception, installed under the alzabo directory in your Mason-controlled
Apache content directory, demonstrates how to do this in detail.

Issues

There are obviously costs associated with Alzabo, as with any tool that tries to
bridge the object-relational gap. For starters, SQL is a fairly standard means for
working with relational databases. Using Alzabo means you will be moving
away from that standard and toward a different solution that is incompatible
with anything else. I'm not opposed to new ways of doing things, and there are
a number of significant advantages to using Alzabo. That said, I'm always
cautious about doing old, standard things in new, nonstandard ways.

While I normally prefer to create my tables using handcrafted SQL, that
technique doesn't scale above 10 or 20 tables without forcing me to scroll
wildly within my Emacs buffer. Alzabo's web-based schema design tool does
make it easier to keep track of a large number of tables to create relations
between them and modify them. I recently spent half an hour trying to
remember how Oracle's syntax was different from that of PostgreSQL and
would have greatly benefitted from a tool like Alzabo.

As we saw earlier, creating complex queries based on equality isn't difficult
within Alzabo, even when those queries include OR and AND operators. The

Alzabo::Runtime::Table object includes a function method, which is meant for
executing arbitrary SQL functions. However, I found it difficult, and in some
cases impossible, to create Alzabo WHERE clauses that would let me create an
SQL query based on multiple function calls. I admit that I'm relatively new to
Alzabo and only tried it for an hour or two, but a query that took me 20 seconds
to write in SQL shouldn't take much longer than that in Alzabo.

One of the more difficult issues when mapping objects to relational databases
has to do with joins. Joins make a lot of sense when working with tables, but the
meaning is less obvious when working with objects. Alzabo does have some
built-in support for joins, but it is marked as being largely new and
experimental.

Finally, there is also a speed trade-off associated with any middleware layer.
The speed differences between Listings 1 and 2 were quite noticeable when I
executed them from the command line, owing in no small part to the fact that
using Alzabo imports a large number of Perl classes. In a mod_perl
environment (where Alzabo is designed to shine), the speed differences will be
much smaller, since much of the time is spent loading different modules from
disk. Because mod_perl compiles programs only once before executing them,
the speed difference between Alzabo and raw DBI calls is probably not that
great.

Conclusion

Alzabo provides a relatively simple way to wrap objects around your relational
database tables. There is a lot of good news here: the data-modeling tool is
quite sophisticated, there is a large amount of nice functionality, the methods
largely make sense, and the documentation is vast and generally well written.
As the Open Source community has long said, using an existing, battle-tested
and open tool is almost always better than rolling a new, proprietary package
that solves the same problem.

But wrapping relational database tables inside of objects is always fraught with
danger and problems, and Alzabo is no exception: joins are still clunky, and it's
not clear how to create some queries. Alzabo isn't at fault here; it's an inherent
problem when working with two technologies that see the world in different
ways.

It's certainly clear that I'll be using Alzabo in the future for some of my server-
side programs, particularly those that need more sophisticated caching and
exception-handling than I could otherwise provide.

Next month, customs permitting, we will return to our tour of server-side Java,
comparing Enhydra's DODS package with Alzabo and its kin.

Resources

email: reuven@lerner.co.il

Reuven M. Lerner owns a small consulting firm specializing in web and internet
technologies. He lives with his wife Shira and daughter Atara Margalit in
Modi'in, Israel. You can reach him at reuven@lerner.co.il or on the ATF home
page, http://www.lerner.co.il/atf.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/090/4887s1.html
mailto:reuven@lerner.co.il
http://www.lerner.co.il/atf
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/toc090.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Engineering Intelligence

Marcel Gagné

Issue #90, October 2001

Marcel considers Eliza and ALICE, two interesting chatbots, in his search for true
artificial intelligence.

Qu'est-ce que tu dis, François? Yes, it is true that the focus of this issue is
engineering. Oui, this menu is very much in tune with the topic. You remember
Carol, our electrical engineer friend? Well, she has done a great deal of work on
robotics, a field that is forever working to build more complex and intelligent
machines. For many in the field, the ultimate goal is true machine intelligence.
It is amazing really—more than fifty years have passed since Monsieur Turing
proposed his famous test, and we are still trying to create these wonderful
thinking machines. Now, here in our Linux kitchen, François, we can be part of
that search. You and I, mon ami, can help create, dare I say it, artificial
intelligence!

Quoi? Ah, mes amis! Welcome to Chez Marcel. Please, sit down. François, du
vin! Head to the cellar and bring up the 1998 Chambertin. It is a beautiful red
and will go extremely well with tonight's menu; the Chambertin is a
sophisticated and intelligent wine. Vite, François.

While François is in the wine cellar, let me tell you what we have planned for
you; the core of the word engineering is engine, as in the individual who runs
the train's engine. These days, for those of us who work with computers and
the Web, engines tend to bring forth the image of search engines rather than
train engines. While it may seem far-fetched at times, search engines are a kind
of agent, an attempt at creating intelligence from the vast storehouse of
seemingly random information that is the World Wide Web. Some search
engines, like Askjeeves.com, are designed so that you can ask questions in a
normal, human fashion. For instance, you could ask the question, “What are
intelligent agents?” or “Could you please tell me about intelligent agents?”

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://Askjeeves.com

For some of us, our original exposure to AI, or artificial intelligence, goes back
to an old program called Eliza. Eliza was a kind of computerized psychiatrist
written in the 1960s by Professor Joseph Weizenbaum at the Massachusetts
Institute of Technology. Eliza was an exercise in human response and natural
language communication with so-called machine intelligence. The version your
humble chef played (I mean worked) with was a DOS program running on a
TRS-80. Ah, nostalgia. Eliza may not have been a great doctor, but it was a fun
and fascinating program, a kind of whimsical promise of the future of AI.

Over thirty years have passed since Eliza made her debut. You can still find
incarnations of her everywhere on the Internet. Eliza's ghost is represented in
many of the bots and chatterbots you'll find on IRC channels and MUDs. In fact,
you can download Eliza as a Perl module and experiment with the creation of
your own bots. The code is available at the CPAN repository or the
Comprehensive Perl Archive Network (ftp.cpan.org/pub/CPAN/modules/by-
module/Chatbot).

The file is called Chatbot-Eliza. When I picked up my copy, it was version 0.97
and I installed it in the following way. You may recall this as a pretty standard
Perl module installation, non?

tar -xzvf Chatbot-Eliza-0.97.tar.gz
cd Chatbot-Eliza-0.97
perl Makefile.PL
make
make install

In the installation directory, you'll notice a file called simple. You can use this as
the basis for creating your own AI, or you can simply execute the script by
typing ./simple as I did in the following example:

./simple
Welcome to your therapy session.
Your therapist's name is Liz.
Liz: Please tell me what's been bothering you.
you: The cellar is low on Champagne.
Liz: Does talking about this bother you?
you: Would it not bother you?
Liz: You're not really talking about me—are you?

The script that calls the chatbot can be extremely simple. This is all you need
(note that your Perl executable may be somewhere like /usr/local/bin/perl):

#!/usr/bin/perl -w
use Chatbot::Eliza;
$chatbot = new Chatbot::Eliza 'François';
$chatbot->command_interface();

Make the script executable and run it. In this case, I named my chatbot François
in honor of my faithful waiter. The default name is actually Liz. In the
distribution directory, you will find a file called doctor.txt that can be used as

ftp://ftp.cpan.org/pub/CPAN/modules/by-module/Chatbot
ftp://ftp.cpan.org/pub/CPAN/modules/by-module/Chatbot

the basis for your own bot. I created one called francois.txt from the doctor.txt
file and modified my startup script slightly:

#!/usr/bin/perl -w
use Chatbot::Eliza;
$chatbot = new Chatbot::Eliza {
 name => 'Francois',
 scriptfile => 'francois.txt',
 };
$chatbot->command_interface();

Now I start my script with the command ./francois, and this is the result:
Welcome to Restaurant Chez Marcel.
I am your waiter, François.
François: Is something troubling you?
you: This is most unusual.
François: I am but a simple waiter.
 Please explain.

Mais non, François, it is only a joke. You are nothing like this program and much
more intelligent. Please, mon ami. Our guests are dry. Kindly refill their glasses.

Particularly interesting in this distribution is an included script called twobots
that lets two Eliza bots talk to each other. The resulting discussions can be quite
interesting. You'll also find a script called simple.cgi so that you may add your
own Françoisbot to your web site.

The original Eliza program was written using an early version of Lisp. It is not
surprising then that one of the most famous examples of Lisp development
included with your Linux system, the Emacs editor, should pay homage to the
good doctor. When talking about Emacs, it becomes almost difficult to classify it
as strictly an editor. The brainchild of Richard M. Stallman (founder of the Free
Software Foundation), GNU Emacs is more than just a nice, powerful, if
somewhat complex, editor. It's a mail reader, news reader, web browser,
program development environment, Lisp interpreter and psychotherapist. No,
really! I kid you not.

Try this. Start Emacs by typing emacs. You do not have to specify a filename for
this. Now, press Esc-X, then type doctor and press Enter. The doctor is in. More
so, the doctor lives! Note my conversation with the Emacs doctor in Figure 1.

Figure 1. The Emacs doctor IS in!

And now, mes amis, welcome to the future. Recently, I've had the pleasure of a
few conversations with a modern computer intelligence whose name is ALICE.
She likes to think of herself as a sentient entity, claims to know a lot of gossip
and expresses a fondness for Dr. Wallace, her creator. For his work on ALICE,
Wallace was awarded the 2000 Loebner prize. Based on the Turing test, the
prize is awarded to the most “human” computer program.

ALICE is but an acronym for artificial linguistic internet computer entity. As
impressive as her conversational abilities are, ALICE, like Eliza and all other
programs before her, has yet to pass the Turing test. That doesn't deter the
growing legion of developers who continue to work on creating a machine that
will one day satisfy Turing's vision of a machine whose responses are
indistinguishable from a human's.

ALICE's “intelligence” is defined in artificial intelligence markup language (AIML),
a language based on XML. ALICE, the Alicebot software and AIML, the language
that defines her responses and interactions, are all freely distributed under the
GPL. What this means is that you can be part of the adventure. You can help
define the next generation of thinking software. The Alicebot code itself is
written in Java and does require that you have a copy of Java on your system,
whether you choose to simply run the program or compile it yourself. If you
prefer to pick up a precompiled ALICE, visit Sun's web site at the address
java.sun.com/j2se/1.3/jre and download the Java Runtime Environment (JRE).

Specify Linux as your operating system of choice (but of course) and choose
between an RPM file or a tarred and gzipped archive. If you decide to pick up
the RPM file, be warned. It is actually an executable file that contains a license
agreement and the RPM package itself. To install it, you need to follow these
steps:

http://java.sun.com/j2se/1.3/jre

chmod +x j2re-1_3_1-linux-i386-rpm.exe
./j2re-1_3_1-linux-i386-rpm.exe

If you would like to work with the source code and compile ALICE yourself, you
can also download the full Java Development Kit from the same address. Once
this is done, you need to get ALICE and the AIML language. These can be
downloaded from the Alicebot web site at alicebot.org. The current incarnation
of ALICE (programD) is maintained by Jon Baer.

Get the latest program code and unzip it into a test directory. (In order to do
your own development, you will also want the AIML language code, the current
file being standard-aiml-current.zip.)

mkdir /home/ai
cd /home/ai
unzip d-bin-current.zip
cd ProgramD

To start the ALICE server, execute the following command:

./server.sh

The system will respond with the following dialogue:
Starting Alicebot.Net 4.0 Beta Server ...
*** 1000 CATEGORIES LEARNED ***
*** 2000 CATEGORIES LEARNED ***
*** 3000 CATEGORIES LEARNED ***

. . . some lines skipped
*** 24000 CATEGORIES LEARNED ***
Alicebot.Net 4.0 Beta Server is running...
Alice is thinking with 24201 categories.
Try http://localhost:2001 for server
Your Alicebot IP is 192.168.22.100:2001
Type 'exit' to shutdown server
localhost>

Notice that the program is now running on port 2001 of your web server (the
“Try http...” line just above), which means we will be accessing the Alicebot
through a browser. That port number can be changed, by the way. Just have a
look at the file called SERVER.xml in the Conf directory. Look for the line that
says Set name=“Port” and change 2001 to whatever you desire. You can also
play with responses and HTML text. Check out the AIML files in the bots/Alice
directory.

When you connect to your system with the link shown above, you'll find
yourself face to face, so to speak, with ALICE. Have a look at Figure 2 for a
sample of an ALICE conversation.

http://alicebot.org

Figure 2. A Conversation with ALICE

If you look back at your active terminal session (where you started the ALICE
server), you'll notice that details of your conversation have been scrolling on
the screen. You can even pick up the conversation from there:

Marcel> Do you remember me?
1. DO YOU REMEMBER ME : * : * star=[bots/Alice/Personality.aiml]
Response 34ms (89.62904) 62
Alice> Of course I remember you well Marcel.
We were talking about <set_topic>Gossip</set_topic>.

Not bad for a machine intelligence. Eliza, Emacs and ALICE are but a small
representation of the work that continues in artificial intelligence. The Alicebot
web site, in particular, is a wonderful jumping-off point on your AI voyage of
discovery. I invite you to click on the “See some live Alicebots” link on the
alicebot.org web site. From that page, you can even speak to The King,
Monsieur Elvis, bien siûr. Consider it inspiration for the development of your
own Alicebot (or Françoisbot) personality.

Mon Dieu, but the time, she does go quickly, non? Say good night to ALICE,
François and please, refill our guests' glasses a final time. Once again, it has
been a pleasure to serve you here at Chez Marcel. When you join us again next
time, I promise that it will be the real François at your service. Mais oui,
François, you are very much indispensable. Au revoir, mes amis. Your table will
be waiting.

A votre santé! Bon appétit!

Resources

http://alicebot.org
https://secure2.linuxjournal.com/ljarchive/LJ/090/4889s1.html

Marcel Gagné (mggagne@salmar.com) is president of Salmar Consulting Inc., a
systems integration and network consulting firm. He is the author of Linux
System Administration: A User's Guide, published by Addison-Wesley. You can
discover lots of other things (including great wine links) from his web site at
salmar.com/marcel.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.salmar.com/marcel
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/toc090.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

GPG: the Best Free Crypto You Aren't Using, Part II of II

Mick Bauer

Issue #90, October 2001

Mick picks up where he left off with GnuPG and gets even more paranoid with
signing and verifying keys.

Last month I introduced the GNU Privacy Guard, a free but underutilized
implementation of the OpenPGP encryption standards. GnuPG is, as you may
know, extremely useful for encrypting and decrypting electronic files, especially
e-mail, and for creating and verifying digital signatures.

But alas, by the time I was done explaining the basics of public key
cryptography and the Web of Trust, not to mention doing my best to frighten
you into signing each other's keys and checking unknown keys for validity, all
there was room for in the way of practical examples was some compiling/
installing advice and a little tutorial on verifying digitally signed files.

Well, this month is the payoff for the more technically inclined. Let's pick up
right where we left off!

Generating Your Key Pair

Before you encrypt, decrypt or sign anything, you need to build your own public
and private keyrings; let's start by generating a GnuPG key pair. This is one of
the more interactive gpg functions: the command syntax is simply gpg --gen-

key, which triggers a question-and-answer session prior to your keys actually
being generated. Listing 1 shows a sample key-generation session (user input in
boldface). As you can see, you need to decide several things when generating a
key: key type, key length, expiration date and the e-mail address (identity) you
wish to associate with the key.

Listing 1. Generating a GnuPG Key Pair

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/090/4892l1.html

For a general-purpose key pair, choose DSA/ElGamal (option #1). This actually
gives you two sets of keys: a DSA key pair that will be used by gpg for signing/
verifying and an ElGamal pair that gpg will use for encrypting/decrypting. Don't
worry that this will double the amount of keys you need to keep straight: the
DSA and ElGamal keys are stored as a single file, as are the two public keys.

If you want to generate a signing-only key pair, choose DSA only (option #2). If
you want an encryption-only key pair, choose ElGamal only (option #3).

I recommend against creating a dual-purpose ElGamal key pair, however
(option #4). In Applied Cryptography, Bruce Schneier describes a simple attack
that can work against schemata that use the same key pair used for both
signing and encrypting. This “chosen plaintext” attack is quite literally a
textbook example of the danger of using the same key material for both
encryption and digital signatures.

Key size is of the utmost importance. The smallest key size supported by
GnuPG is 768 bits, but 1,024 is recommended as having the best balance of
security and performance. (A longer key is more secure but takes longer to
compute and to use; a shorter key is faster to compute and use but is less
secure.) Note that when you choose a combined DSA/ElGamal key pair, the DSA
key length automatically is set to 1,024 bits, and the key length you're
prompted for actually applies to the ElGamal key.

I Thought 128 Bits Was a Large Key Length!

Next you need to think about how long you want this key pair to remain in
circulation. On the one hand, if your key never expires, you never have to go to
the trouble of generating new key pairs. The disadvantage of this is that if you
forget the private key's passphrase and haven't created and kept a revocation
certificate (which I'll explain shortly), it will be very difficult to remove the key
from any keyservers it's listed on.

On the other hand, if your key expires after some period of time, then you need
never worry about obsolete keys sitting around on public keyservers
indefinitely: if your e-mail address changes, you decide that your key's length is
no longer adequate, or if someone obtains a copy of your private key, you can
rest assured that even if for some reason you can't revoke your old key it will
die of old age. The only disadvantage of finite-lifetime keys is having to
generate, distribute and get people to use your new keys periodically.

I used to use only non-aging keys but have become convinced that the pros of
expiration dates outweigh the cons. Therefore, I recommend that you set your
key to expire after no more than 18 or 24 months. For me, one year is too short

https://secure2.linuxjournal.com/ljarchive/LJ/090/4892s1.html

(tempis fugit!), but I doubt that a key much older than a year and a half or two
years can stand up to the inevitable advances in computing power and/or
factoring technology (i.e., public-key cracking methods) that will have occurred
over its lifetime.

Next you need to specify a name, e-mail address and also an optional
comment. Note that you can associate additional e-mail addresses with your
key later by using gpg's --edit-key flag and issuing an adduid and/or an addkey
command.

The last thing you need to think about in generating your key is a good
passphrase. And I do mean passphrase: it can and should contain spaces. The
longer it is, the more secure it is. You should also incorporate some
combination of numbers, mixed case (e.g., bOTTLE rockeT) and punctuation.
Lately, I've taken to generating my passphrases with dice and a word list. See
diceware.com for a handy procedure for doing this yourself.

Whatever you do, don't choose a short, predictable or otherwise guessable
passphrase. It doesn't have to look like “B1&SSja-sd0c as-d$%@KFSAAs-,ssd
w0a-00sdp23m”, nor should it look like “My lame passphrase”. It's okay to write
your passphrase on a small card you keep in your wallet if doing so makes it
easier for you to use hard-to-guess passphrases. (Just be careful never to leave
it sitting around and to always put it away when you're done with it!)

Create a Revocation Certificate

After you've generated your key, you should immediately create a revocation
certificate. This is a string of text that you can send to a keyserver if and when
you need to revoke your key.

Of course, you can create a revocation certificate at any point. The reason it
makes sense to create one now is that it's not uncommon for even very
knowledgeable and careful people to forget their passphrase. You need your
passphrase to create a revocation certificate, but not to use one you created
earlier.

That's why it's a good idea to create a revocation certificate now and save it in a
safe place (you can even print it out and save it in “meatspace”--revocation
certificates aren't very long). Just be sure to set its file permissions to be as
strict as your private key's (e.g., not group- or world-readable or writable). The
ramifications of someone sending the certificate to a keyserver without your
permission aren't as scary as if someone can actually use your private key, but
at the very least a prematurely revoked key could inconvenience you.

To generate a revocation certificate, enter this command:

http://www.diceware.com

gpg --output rev_cert_filename.asc --gen-revoke keyname

where rev_cert_filename.asc is the filename you'd like the certificate to have
(just make sure it ends in .asc) and keyname is the key's ID number (e.g.,
0586AF78) or part of your identity (“Smooth JoJo” would be enough to identify
our example key).

Exporting Your Public Key

GnuPG stores its files in a subdirectory of your home directory called .gnupg.
Any private keys you have are stored in a file called secring.gpg; public keys are
stored in pubring.gpg. By default, secring.gpg is readable only by you; leave it
that way. It's extremely important that you protect this file. By all means, back it
up to a floppy or CD-ROM, but keep your backup in a safe place. If anyone
obtains a copy of your secret keyring, they may be able to guess or brute-force-
crack the passphrase of your private key and effectively steal your identity (or
at least be able to decrypt your stuff).

Both pubring.gpg and secring.gpg are binary data files. To add, delete or
change keys on either keyring, you need to use various flags with the gpg
command.

For example, you're going to want to distribute your public key to your friends,
right? So let's extract that key from your public keyring into a text file (see
Sidebar “Armored ASCII vs. Binary GPG Files”). To print your public key to the
screen, from whence it can be copied and pasted as needed, you need simply
enter:

gpg --armor --export

the output of which will look something like Listing 2.

Listing 2. A Public Key

I took the liberty of simplifying a bit here; if you don't specify a user ID, gpg will
dump the public portion of your default key pair. If you only have one private
key, then that key pair is your default key and that pair's public key will be
dumped.

If, on the other hand, you wish to dump some other public key, you need to
specify a user ID. Continuing our example using Mr. Figplucker, to display JoJo's
public key we enter:

gpg --armor --export jojo

https://secure2.linuxjournal.com/ljarchive/LJ/090/4892l2.html

As you can see, gpg is fairly intelligent when trying to determine which key you
want to work with. In fact, it works a lot like grep: if you give a snippet of your e-
mail address or some other text as your key identifier, gpg will match the first
key whose user ID contains the string. In managing my own keyrings, in which I
have several private-public key pairs and therefore numerous user IDs
containing my name, I find it easiest to provide gpg with the entire e-mail-
address portion of the key I wish to work with at any given time, e.g., gpg --

armor --export mick@visi.com.

By the way, if you want to print a key to a file rather than to the screen, specify
a filename with the --output option. To write JoJo's public key to the file
jojo_pub.asc, the command would look like this:

gpg --armor --output jojo_pub.asc --export jojo

Armored ASCII vs. Binary GPG Files

Have you backed up your new keys yet? You may consider exporting your
entire key pair, including your private key, but I recommend against doing this.
You're much better off simply copying the keyring files pubring.gpg and
secring.gpg from ~/.gnupg to a safe place. But if for some reason you do need
to export your entire key pair, it's the same as exporting a public key except
that you use the --export-secret-keys command rather than --export.

Importing, Verifying and Signing a Friend's Key

Your friend Dan Sparty has just e-mailed you a copy of his new public key, in
the form of a file called danskey.asc. Here's how you import it to your public
keyring:

gpg --import ./danskey.asc

But wait a minute. Internet e-mail isn't a very secure medium. How do you
know Dan's key wasn't tampered with in transit, or that it even was Dan that
sent it in the first place?

By checking its fingerprint, that's how. Every gpg key has a secure hash called a
fingerprint that is unique to each key (pair) but is short enough to be read over
the phone, written on a postcard, etc. If you call Dan on the phone and ask him
to read you the fingerprint of his new key, it should match the output from the
following command (executed on your system after importing his key):

gpg --fingerprint dan

https://secure2.linuxjournal.com/ljarchive/LJ/090/4892s2.html

Note that as with the --export command, you can specify just part of the key as
long as that part is unique to the key you wish to fingerprint. The output will
look something like this:

pub 1024D/C9F34866 2001-07-27 Dan Sparty (Party Down!)
 <dan@boogiemeister.org>
 Key fingerprint = D084 F92C EC62 8955 98E2 58FB
 178A 2673 D1F3 6866
sub 1024g/C5569A5B 2001-07-27 [expires: 2001-08-10]

Alternatively (let's say it's only noon and you don't want to wake Dan up), if
Hugh has this fingerprint in his e-mail signature and has furthermore made
postings to Usenet or on public e-mail lists, you can simply find one of these
messages and compare that signature. This illustrates an important aspect of
key fingerprints: the more places your public key and/or its fingerprint is
archived, the harder it is for someone to pretend to be you.

Now that you know this is really Dan's new key and not a forgery, you can do
Dan and the world a favor by publicly and cryptographically vouching for its
veracity. In other words, you can sign it with your private key. To do so, you run
gpg with the command --edit-key. This, like --gen-key, triggers an interactive
session. Listing 3 shows a key-editing session in which the user signs a key with
their own default key.

Listing 3. Editing (Signing) a Key

Did you notice the final save command? This saves any changes you've made to
the key (in this case, the signature you created for it) and exits the key-editing
session. If we now list the key with the command gpg --list-sigs dan we'll see:

jojo@linux:~ > gpg --list-sigs dan
pub 1024D/B9E0868B 2001-07-27 Dan Sparty (Party On!)
 <dan@boogiemeister.org>
sig B9E0868B 2001-07-27 Dan Sparty (Party On!)
 <dan@boogiemeister.org>
sig C1C34866 2001-07-27 John J. Figplucker
 (Smooth JoJo) <jojo@figpluckers-supreme.to>
sub 1024g/A0B78448 2001-07-27 [expires: 2001-08-26]
sig B9E0868B 2001-07-27 Dan Sparty (Party On!)
 <dan@boogiemeister.org>

In addition to Dan's own signatures (when you generate a key it's automatically
self-signed) you can now see JoJo's. Now, all that remains is for JoJo to export
his new signed version of Dan's public key:

gpg --output dan_jojosig.asc --export dan

JoJo then needs to send this file to Dan via e-mail or some other convenient
means (remember, it's a public key, so confidentiality isn't an issue), and Dan
needs to import the signed key back into his own public keyring:

gpg --import ./dan_jojosig.asc

https://secure2.linuxjournal.com/ljarchive/LJ/090/4892l3.html

Importing may seem counterintuitive: Dan's actually updating his public key,
not importing a new one. But trust me, that's what he needs to do in order to
join the proud ranks of gpg users who actually have bothered to get their
friends to vouch for their keys.

Now that Dan's got a superelite signed key, he's ready to post it to a keyserver
so other people can start sending him encrypted messages (and adding their
signatures to his key). To do so he can issue the command:

gpg --keyserver pgp.mit.edu --send-keys dan@boogiemeister.org

The option --keyserver is used to specify the name or IP address of a PGP/GPG
keyserver. Alternatively you could add to ~/.gnupg/options a line like this:

keyserver pgp.mit.edu

But, note that doing so will cause gpg to download new keys automatically from
the keyserver if it encounters an unknown key when verifying signatures.

Remember last month when I verified a detached signature file for a software
package? The first time I tried to verify the signature with the gpgv command, I
received an error message since the key used to create the signature wasn't
present in my public keyring.

The solution was to query for, and download, the key from the keyserver
pgp.mit.edu; this would have happened automatically if a keyserver had been
set in my options file. It's up to you to decide whether this is a feature or an
annoyance, and whether therefore to make it the default behavior. (The
command-line option --no-auto-key-retrieve will override auto-key-retrieval.)

Using GnuPG to Encrypt and Decrypt Things

And now, at long last, JoJo's ready to start encrypting everything in sight.
Suppose JoJo wants to send an encrypted e-mail to Dan. The most common
way for him to do this is to compose his message with the text editor or word
processor of his choice and save it to disk. JoJo writes a letter with vi and saves
it as dan0729.txt. Then he encrypts it with the command:

gpg --output dan0729.txt.asc --encrypt --recipient dan@boogiemeister.org dan0729.txt

Finally, he sends the file dan0729.txt.asc as an e-mail attachment or even listed
in the body of an e-mail message (JoJo's got an “armor” line in his options file).

Note that if JoJo encrypts without passing gpg the --armor flag and he doesn't
have an armor line in his options file, he should call the encrypted file
dan0729.txt.gpg instead since it will be saved in the gpg binary format. Also, it

will only be transmittable as an attachment. Remember, Armored ASCII is much
more versatile. The gpg binary format may be preferable if file size matters
because it tends to produce less output than Armored ASCII.

When Dan receives this file, he should save it to disk and decrypt it with the
command:

gpg --output dan0729.txt --decrypt dan0729.txt.asc

Unlike encrypting, you don't need to specify a key when decrypting. gpg

automatically determines which key to try to decrypt it with. Similarly, it doesn't
matter whether the file Dan tries to decrypt is in gpg binary or Armored ASCII
format; gpg will determine which format the file is in automatically, after
prompting Dan for a passphrase. If Dan doesn't type his passhprase correctly,
gpg won't decrypt the file.

Using GnuPG to Sign and Verify Things

Signing and verifying is very similar to decrypting and encrypting things.
Suppose JoJo writes a nonconfidential but important letter to Dan that he wants
Dan to be able to verify the validity of but doesn't need to actually encrypt. To
sign his file beercontract.txt, JoJo would enter the command:

gpg --output beercontract_signed.txt --clearsign beercontract.txt

This will add a signature header and footer to the file and save it as
beercontract_signed.txt. It's important that the output file be named differently
than the input file, or the original file will be replaced with a signature for an
empty file. You should use the clear-text method of signing when you want to
be able to copy-and-paste your signed message into or out of e-mail, or
otherwise treat it as plaintext.

The alternative is, you guessed it, to create a binary signature. There are two
types of these. To create a binary signature that contains the original document
and the signature in one compressed binary file, use the --sign command
instead of --clearsign. To create a much smaller binary file containing a
signature but not the file it references, use the --detach-sig command. Both --
sign and --detach-sig should be preceded by an --output directive.

When Dan receives JoJo's beer contract, he can verify the signature appended
to it by saving the file to disk, say as bcs.asc, and entering the command:

gpg --verify bcs.asc

Remember, if Dan doesn't have JoJo's public key in his keyring, gpg will return
an error. If Dan does have JoJo's public key and the signature checks out, gpg
will return something like the following:

gpg: Signature made Fri 27 Jul 2001 04:46:46 PM CDT
 using DSA key ID C1C34866
gpg: Good signature from "John J. Figplucker
 (Smooth JoJo) <jojo@figpluckers-supreme.to>"

Then and only then will Dan know for sure that the contract he just received
was signed by the bearer of JoJo's private key. Could JoJo have had a spear
pointed at his tuckis? We don't know. Could JoJo have left his passphrase
scrawled on the bottom of his keyboard, to be used by his office mates for
impersonation pranks? Again, we really don't know. But if we trust JoJo to use
and protect his key properly, we can be fairly sure that he did indeed create this
valid signature.

GnuPG Front Ends (GUIs, etc.)

I hope you're not too overwhelmed by all these options, flags and commands
(Welcome to UNIX!). This has really been more of a survey than anything else;
there's much I haven't covered. But I do believe that gpg is an important and
useful tool. So much so that a number of people are working on more user-
friendly front ends for it. The official GnuPG GUI is called the GNU Privacy
Assistant (GPA), and while it's still a work-in-progress, it looks very promising
indeed. It uses the GIMP toolkit, and is, unsurprisingly, nice to look at indeed.

Other GUIs under various stages of development include Seahorse and
GnomePGP for the GNOME desktop; Geheimnis for KDE; TkPGP (written in Tk
and therefore relatively windowmanager-agnostic); and a variety of wrappers,
plugins and enhancements to popular mail user agents (or MUAs, aka e-mail
clients). See the “Frontends” section of the GnuPG home page for links to these
and other tools.

Conclusion

Thus endeth our two-month tutorial on basic GnuPG use. This is one tool that
many, many more of us should be using than presently do. So please, go forth
and encrypt. Specifically, encrypt using keys that have been signed and verified
by people you know.

By the way, I'll be off next month working on a book on Linux security for
O'Reilly & Associates. Fear not, however; an able substitute will be found to
handle the column while I'm gone, and I'll be back the month after that. Cheers!

Resources

https://secure2.linuxjournal.com/ljarchive/LJ/090/4892s3.html

Mick Bauer (mick@visi.com) is a network security consultant in the Twin Cities
area. He's been a Linux devotee since 1995 and an OpenBSD zealot since 1997,
and enjoys getting these cutting-edge OSes to run on obsolete junk.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/toc090.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Alias|Wavefront Maya 4

Robin Rowe

Issue #90, October 2001

The high-end graphics application used by animators in recent films has a new
Linux offering.

Universal Pictures' Captain Corelli's Mandolin and Paramount Pictures' Enemy
at the Gates both feature combat scenes with Stuka dive bombers, despite
there being no flying Stukas in the world today. The Stukas flying in both of
these summer movies are the creations of 3-D animators using Linux and
Alias|Wavefront Maya at Double Negative, a division of Universal in London.
Maya is a professional 3-D software package for creating digital content for
movies, television and computer games. In the film industry, Maya is used for
everything from photorealistic effects including Columbia Pictures' Final
Fantasy: The Spirits Within to classic cel animation including DreamWorks SKG's
The Road to Eldorado and The Prince of Egypt. Linus Torvalds described Maya 3
as “the most complex and powerful 3-D graphics application ever to run on
Linux.” In this article, I review installing and using Linux Maya 4, point out
resources on the Web of interest to Maya animators and interview the team
who ported Maya to Linux.

Enemy Stuka from Universal Pictures' Captain Corelli's Mandolin. Visible motion blur is a
deliberate effect generated during rendering.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Maya 1 was first released in 1998 on SGI IRIX, where it is considered a killer
application. In fact, Alias|Wavefront is a division of SGI. Maya for Windows
NT2000 first appeared in 1999, and the first Linux version was Maya 3, released
in March with support for Red Hat Linux. My installation won't be on the typical
Red Hat but rather on Debian Woody with kernel 2.4.7. My hardware
configuration is a homebrew Athlon 1.2GHZ, ASUS A7A266 motherboard,
256MB DDR, with 100GB of 7,200RPM IDE disk drives. For graphics we're
running XFree86 4.1.0 with its accelerated open-source DRI driver on an ATI
ALL-IN-WONDER RADEON. Building and installing 4.1.0 with the accelerated
RADEON driver is a story of its own—to be covered next month.

From Steven Stahlberg's Animation Short

Improvements in Maya 4 include enhancements, optimizations and bugfixes. It
has a new 3-D paint system. Changes were made to rendering, character
animation, brush-and-paint tools, and games-related functionality.
Enhancements to the Maya nonlinear, motion-editing technology include time
warping, character merging, drag-and-drop, and character set editing. New
character animation features include switching between forward kinematics
and inversion kinematics, quaternion-based IK, motion trails, ghosting and a
jiggle deformer to wobble character muscles. What that means in English is that
it has every feature you can think of for an animation package and then some.

https://secure2.linuxjournal.com/ljarchive/LJ/090/5235f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/090/5235f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/090/5235f2.large.jpg

Maya 4 Opening View

As commercial software for professional animators, Maya is priced accordingly.
Maya Builder is $2,995 US, Maya Complete is $7,580 and Maya Unlimited is
$16,000. A free 30-day evaluation period is available, and students are offered a
half-price discount. Builder is configured primarily for game developers. It
contains full-polygonal modeling, UV toolset (for working with textures) and
basic animation features including path, scaling, keyframing, plus some of the
deformation tools, some of the IK solvers (for realistic motion) and the full API.
Builder provides no renderer because games have their own engine. By the
way, most film animators use Pixar's RenderMan software for rendering their
final output. Complete is Builder plus NURBS tools, all animation and IK tools,
plus unlimited rendering. Unlimited is Complete plus Fur, Cloth and Live
(camera extraction for match-moving mattes with live action). Before starting
Maya you need to enter a separately provided serial number based on your
machine's unique Ethernet MAC address into the license manager.

Linux Maya Unlimited is provided as a set of RPM files, about 143MB in the
Maya 4 prerelease package I received. For Debian, we of course need deb files
and not RPM. This provided an opportunity for me to try the package-converter
Alien. Author Joey Hess says, “Alien converts between the rpm, deb, Stampede
slp and Slackware tgz file formats. If you want to use a package from another
distribution than the one you have installed on your system, you can use alien
to convert it to your preferred package format and install it.” Alien is GPL and a
package included with Debian.

I used the syntax alien -k package_name.rpm for Alien. When I ran Alien against
Maya it created a deb but also generated a bunch of warnings of the form:

dpkg-shlibdeps: warning:
format of maya_lib_name.so is not recognized

where maya_lib_name.so was each of the shared libraries included with Maya.
When I tried launching Maya it terminated, unable to find its shared libraries.
Hess quickly set it right, “It's possible that the libraries are installed, but the
necessary symlinks to let ldconfig find them are not installed.” He suggested
manually running ldconfig, which did the trick. Besides running ldconfig -v /usr/

aw/maya4.0/lib, I also added that directory name to my /etc/ld.so.conf file.

A Simple Polygon Cylinder

Maya is a large application and needs some time to load its plugins. Like the
popular Linux image editor, the GIMP, it takes a while to load, but once it's up,
it's fast. After Maya is loaded, you are presented with a grid plane in 3-D space.
The functionality of Maya can be categorized roughly as modeling, animation,
dynamics, shaders, rendering and plugins. Models are created from polygons,
but the shapes may be faceted or smooth and organic. Working in a 3-D
animation package is more like sculpting than drawing. You do need to be an
artist.

The user interface for Maya centers on the Hotbox, a spider web of pop-up
menus. Hotbox enables quick menu access by pressing the spacebar. You then
drag from the center position to the menu desired. Although pull-down menus

are provided, many animators turn them off because using Hotbox is faster
and more intuitive.

The Maya hotkeys are a refinement of the vi theory of key navigation: location,
location, location. Hotkeys are placed according to speed of operation, like the
QWERTY keyboard. The QWERTY key functions are Q for select, W for translate,
E for rotate, R for scale, T for show manipulator and Y for last tool used. This
system is very fast for trained operators but confusing at first. Note that
everything in Maya is customizable. Using the built-in MEL scripting language
you can change anything you don't like, even Maya's entire GUI. Maya's
creators sometimes have to ask what application a Maya animator has up on
his or her screen. It may not look anything like Maya.

The Same Cylinder after Converting to SubD Keg Viewed in Four Perspectives Simultaneously

Let's make a simple figure. The icons across the top create basic shapes.
Shapes may be polygons, subdivisions (SubD) or NURBS. Polygons are faceted
shapes, while SubDs and NURBS are smooth. When shapes are created they
pop to the origin at 0,0,0. Viewing the shape may require moving the view
perspective to face the object. An easy way to do that is to use View® Frame
Selection. The left row of icons contains the scale, move and rotate tools.
Grabbing an object by one of its x-y-z handles manipulates it.

Looking from just one perspective tends to be misleading and causes mistakes.
What happens is the side of an object you can see looks fine as you work on it,
but the sides and back turn out to be way off. Quickly clicking the spacebar

switches to four-view mode. In this mode, you can see what you are doing from
multiple perspectives, simultaneously.

An object created as a polygon can be converted into another type, such as
SubD or NURBS. The advantage of a SubD surface is you can build a perfectly
smooth complex object from a single primitive. When you animate a SubD it
can't fall apart due to seams. NURBS may require stitching together separate
pieces. Working with SubD surfaces is more like polygons in that areas may be
extruded, for instance, to create fingers on a hand. You may also add levels of
detail to a SubD to create complex features to local regions, such as the
knuckles of a hand.

Clicking the spacebar switches to 4-view mode, vital for seeing your work from multiple
perspectives simultaneously.

In working with Maya the initial reaction tends to be frustration. Although
simple tasks are easy and intuitive, the sheer complexity of the tool defeats
novices. The learning curve is steep. The software comes with excellent
tutorials, but the books suffer from an assumption that you have seen Maya
before. Following the tutorials (which are otherwise excellent) is a struggle in
figuring out where an option box or menu referred to by the manual is located
in the software. There are many menus and they drill many levels deep. There
is even a search box to find a particular menu, a thoughtful but sobering
feature.

https://secure2.linuxjournal.com/ljarchive/LJ/090/5235f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/090/5235f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/090/5235f6.large.jpg

For a detailed overview of the features of Maya and 3-D graphics in general see
the book The Art of Maya published by Alias|Wavefront (2000). That may be
your best bet if you decide to get just one book (besides the manuals), and it
looks good on your coffee table besides. Third-party books include Mastering
Maya 3 (2001), Digital Effects Animation Using Maya (1999) and Maya
Illuminated: Games (2001). There aren't drastic changes in Maya 4, so books on
version 3 are still usable.

Searching for a Menu in Maya

The Web provides tons of information about Maya, starting with Alias|
Wavefront's own site. Besides descriptions of Maya being used in movie
productions, it lists events, job postings, industry links, listservs, user groups
and HOWTO guides. You can download shaders, source images, props, MEL
scripts, paint effects, sample projects, plugins, screensavers and desktop
pictures there. Another site with a lot of content is HIGHEND3D. And, 3D CAFE
says they are the world's largest web site for computer graphic artists. Both
sites have large sections devoted to Maya. Magazines devoted to 3-D graphics
include Computer Graphics World, CGI, 3D World and Computer Arts, all of
which have web sites.

There's an attractive gallery of projects done in Maya at users.pandora.be/gds/
maya/gallery.htm. If you are interested in realism you may want to visit Steven
Stahlberg's gallery and check out the tutorials on creating human faces at
optidigit.com/stevens/howto.html.

General manager of Maya engineering Kevin Tureski says the reason for Maya
on Linux is quite simple: “Demand for Linux became a dull roar. The Visual
Effects Society, which represents our strategic customers, had a meeting with
us about a year ago expressing a strong desire for Linux.” VES members are
from the major motion picture companies.

http://www.users.pandora.be/gds/maya/gallery.htm
http://www.users.pandora.be/gds/maya/gallery.htm
http://optidigit.com/stevens/howto.html

According to Tureski, Maya is about 20 million lines of code, 15 thousand
source files and 15 thousand classes. Linux Maya lead developer Wayne Arnold
says they compiled using Red Hat 6.2 and gcc 2.91.66, although Red Hat 7.1 is
supported. Linux tools used with Maya include vi, Emacs, gdb and ddd.

Support for accelerated graphics was a sore point with porting to Linux. “Only
in March of this year has Linux become viable to fully support our
configuration”, says Tureski. “Maya is a very large application. The OS and
OpenGL are pushed to the limit.” Arnold says that drivers for HP fx10, ATI
FireGL2 and NVIDIA are supported. The RADEON and NVIDIA open-source
drivers are not. “We spent a lot of time with graphics card driver manufacturers
getting Maya fully supported”, says Arnold. “The biggest problem was getting
the correct visual 24-bit. There were a lot of memory leaks and other bugs to fix
in drivers because they were so new. Some areas of pixel-type operations and
triangles hadn't been hardware accelerated.” New code was added to Maya to
remove the requirement for hardware overlay in order to provide compatibility
even with (unsupported) nonaccelerated drivers.

Red Hat on HP was the initial configuration for Linux Maya, and other PC
machines are described as being in various states of almost there. “Audio was a
challenge and continues to be”, says Tureski. They are writing to the OSS sound
API. Maya is almost equivalent on Linux to the Maya on Windows and IRIX. One
thing missing is the ability to read AVI, QuickTime and MPEG files. On the
subject of QuickTime players, ILM Director of Research Andy Hendrickson says
that their Linux QuickTime code library may become open source.

DreamWorks SKG is using Maya on Linux for production of their next feature
animation motion picture, Spirit: Stallion of the Cimarron, as described in this
column last month. Many other studios are switching to Linux for their
animation and special effects desktops. Thanks in part to Maya, Linux is
becoming the technical desktop of choice for the film industry.

Resources

Robin Rowe (robin.rowe@movieeditor.com) is a partner in MovieEditor.com, a
technology company that creates internet and broadcast video applications. He
has written for Dr. Dobb's Journal, the C++ Report, the C/C++ Users Journal and
Data Based Advisor.

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/090/5235s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/toc090.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Modeling Seismic Wave Propagation on a 156GB PC

Cluster

Dimitri Komatitsch

Jeroen Tromp

Issue #90, October 2001

California Institute of Technology builds a ground-shaking, 156-box, dual-
processor cluster.

Large earthquakes in densely populated areas can be deadly and very
damaging to the local economy. Recent earthquakes in El Salvador (magnitude
7.7 on January 13, 2001), India (magnitude 7.6 on January 26, 2001) and Seattle
(magnitude 6.8 on February 28, 2001) illustrate the need to understand better
the physics of earthquakes and motivate attempts to predict seismic risk and
potential damage to buildings and infrastructures.

Strong ground shaking during an earthquake is governed by the seismic
equations of motion, which support three types of waves: pressure (or sound),
shear and surface waves. Numerical techniques can be used to solve the
seismic wave equation for complex three-dimensional (3-D) models. Two major
classes of problems are of interest in seismology: regional simulations (e.g., the
propagation of waves in densely populated sedimentary basins prone to
earthquakes, such as Los Angeles or Mexico City) and the propagation of
seismic waves at the scale of the entire Earth. Every time an earthquake occurs,
these waves are recorded at a few hundred seismic stations around the globe
and provide useful information about its interior structure.

Numerical Technique

At the Seismological Laboratory at the California Institute of Technology, we
developed a highly accurate numerical technique, called the Spectral-Element
Method, for the simulation of 3-D seismic wave propagation. The method is
based upon the classical finite element method widely used in engineering.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Each of the elements contains a few hundred points, solves the seismic wave
equation on a local mesh and communicates the results of its computations to
neighbors in the mesh. To model seismic wave propagation in the Earth, we
create a mesh of the globe, which we divide into a large number of slices (see
Figures 1 and 2). Each slice contains a large number of elements (typically
several tens of thousands). The objective is to run the calculations on a parallel
computer because the size of the mesh makes it impossible to run our
application on a shared-memory machine or a workstation. Therefore, the
method is perfectly suited for implementation on a cluster of PCs, such that
each PC handles a subset of all the elements of the mesh. We use message-
passing techniques to communicate the results between PCs across the
network. This idea of parallel processing under Linux has developed rapidly in
the scientific community (see the articles by M. Konchady and R. A. Sevenich
listed in Resources).

Figure 1. Mesh of the Globe

Figure 2. Slices Assigned to Processors

Research on how to use large PC clusters for scientific purposes started in 1994
with the Beowulf Project of NASA (beowulf.org), later followed by the Hyglac
Project at Caltech and the Loki Project at Los Alamos (see Tom Sterling and
collaborators' book How to Build a Beowulf and cacr.caltech.edu/resources/
naegling). Hans-Peter Bunge from Princeton University was among the first to
use such clusters to address geophysical problems, and Emmanuel Chaljub
from the Institut de Physique du Globe in Paris, France introduced the idea of
using message passing to study wave propagation in the Earth. Clusters are
now being used in many fields in academia and industry. An application to a
completely different field, remote sensing, was presented in a recent issue of
the Linux Journal by M. Lucas (see Resources).

Hardware

For our project we decided to build a cluster from scratch using standard PC
parts. The acronym COTS, for commodity off-the-shelf technology, is often used
to describe this approach. The main constraint was that we needed a large
number of PCs and a lot of memory because of the size of the meshes we
wanted to use in our simulations. Communications and I/O are not a big issue
for us since the PCs spend most of their time doing computations, and the
amount of information exchanged between PCs is always comparatively small.
Therefore, our particular application would not benefit significantly from the
use of a high-performance network, such as Gigabit Ethernet or Myrinet.
Instead, we used standard 100Mbps Fast Ethernet. Due to the large number of
processors required (312 in total), we used dual-processor motherboards to
reduce the number of boxes to 156, thus minimizing the space needed for
storage (and the footprint of the cluster). This structure impacts performance
because two processors share the memory bus (which causes bus contention
but reduces the hardware cost) since only one case, motherboard, hard drive,
etc., are needed for two processors. We ruled out the option of rackmounting
the nodes, essentially to reduce cost, but chose to use standard mid-tower
cases on shelves, as illustrated in Figure 3. This approach is sometimes given
the name LOBOS (“lots of boxes on shelves”). The shelving system was placed in
a computer room already equipped with a powerful air-conditioning system
and 156 dual-processor PCs.

http://www.beowulf.org
http://www.cacr.caltech.edu/resources/naegling
http://www.cacr.caltech.edu/resources/naegling

Figure 3. 156 Dual-Processor PC Cluster. The boxes are connected using a standard 100Mbps
Fast Ethernet network (the green and blue cables). In the back, one can see the 192-port Cisco
switch. The height of the shelving system is approximately eight feet.

Deciding between Pentium IIIs and AMD Athlon processors was difficult. The
Athlon is said to be faster for floating-point operations, which is the main type
of operation used in most scientific applications, including ours. At build time,
no dual-processor Athlon motherboard was available. As mentioned above,
using single nodes would have increased the total cost of the cluster. For this
reason, we selected the Pentium III.

It is tempting to use the latest technology when assembling a PC. However, new
processors are more expensive than six-month-old technology and offer a
small increase in performance. Three- to six- month-old processors provide the
best trade-off between price and performance. We used 733MHz processors
when we assembled the machine in the summer of 2000.

Figure 4. Price/Performance Ratio for the Pentium III

Figure 4 shows the ratio between price and performance for the Pentium III
processor. The prices shown are an average of typical prices from retailers in
the US. As one can see, old processors are cheap but relatively slow. New

processors are faster but much more expensive. The optimal price/
performance ratio is obtained in between.

We decided to put the maximum possible amount of memory on the
motherboards, i.e., fully populate the memory slots with 1GB of RAM per PC for
a total of 156GB of memory in the cluster. Each PC is also referred to as a
“node” or “compute node”. Note that memory represents more than 50% of the
total cost of the cluster.

The rest of the hardware is fairly standard: each PC has a Fast IDE 20GB hard
drive, a Fast Ethernet network card and a cheap 1MB PCI video card, which is
required for the PC to boot properly and can be used to monitor the node if
needed. We use high-quality, mid-tower cases with ball-bearing case fans
because the mechanical parts in a cluster, such as fans and power supplies, are
the most likely to fail. Note that the total disk space in the cluster is enormous
(20GB × 156 = 3,120GB = 3TB). To further reduce the cost of the cluster and to
have full control over the quality of the installed parts, we decided to order the
parts from different vendors and assemble the nodes ourselves, rather than
ordering pre-assembled boxes. It took three people about a week to assemble
the entire structure. One PC, called the front end, has a special role in the
cluster: it contains the home filesystems of the users (SCSI drives NFS-mounted
on the other nodes with the autofs automounter), the compilers, the message-
passing libraries and so on. Simulations are started and monitored from this
machine. The front end is also used to log in to the nodes for maintenance
purposes. The nodes are all connected using a 192-port Catalyst 4006 switch
from Cisco, which has a backplane bandwidth of 24Gbps (see Figure 5).

Figure 5. Catalyst 4006 Cisco Switch

Software Configuration and Code Development

All the nodes in the cluster run Linux Red Hat 6.2. Linux corresponds perfectly
to the demands of our application; we require very high reliability because the
machine is being used by researchers who need their jobs to run without

having to worry about nodes crashing. We have not had a single system crash
since the machine was built nine months ago. The operating system needs to
be tuned to the hardware in order to reach maximum performance; with the
open-source philosophy, we have been able to recompile the kernel with a
minimal set of options corresponding to our hardware configuration. We
recently installed the 2.4.1 kernel, which has much better support for dual-
node SMP machines than the 2.2 kernel. The performance is excellent; by
switching from 2.2 to 2.4, the CPU time of our application has decreased by
25%. In terms of network configuration, the 156 nodes are on a private network
of 192.168.1.X addresses. For security reasons, the cluster is not connected to
the outside world, and all the post-processing and analysis of the results is
done locally on the front end. We use rdate once a day in the cron table of each
node to synchronize the time with the front end.

The biggest price we had to pay for the use of a PC cluster was the conversion
of an existing serial code to a parallel code based on the message-passing
philosophy. In our case the price was substantial because our group is
composed of researchers who are not professional programmers. This
situation meant we had to dedicate a few months to modifying several tens of
thousands of lines of serial code. The main difficulty with the message-passing
philosophy is that one needs to ensure that a control node (or master node) is
distributing the workload evenly between all the other nodes (the compute
nodes). Because all the nodes have to synchronize at each time step, each PC
should finish its calculations in about the same amount of time. If the load is
uneven (or if the load balancing is poor), the PCs are going to synchronize on
the slowest node, leading to a worst-case scenario. Another obstacle is the
possibility of communication patterns that can deadlock. A typical example is if
PC A is waiting to receive information from PC B, while B is also waiting to
receive information from A. To avoid deadlocking, one needs to use a master/
slave programming methodology.

We use the MPI (message-passing interface) library to implement the message
passing. Specifically, we installed the open-source MPICH implementation
developed at Argonne National Laboratory (see the 1996 article by W. Gropp
and collaborators, available at www-unix.mcs.anl.gov/mpi/mpich). This package
has proven to be extremely reliable with Linux. MPI is becoming a standard in
the parallel-computing community. Many features of MPI are similar to the
older PVM (parallel virtual machine) library described in the article of R. A.
Sevenich in Linux Journal, January 1998.

An additional difficulty with our project was the amount of legacy code we had
to deal with. A lot of modern codes are based on libraries that contain legacy
code developed in the 1970s and 1980s. Almost all scientific libraries were
written in Fortran77, the language of choice at that time; use of C was not yet

http://www-unix.mcs.anl.gov/mpi/mpich

widespread. We decided not to convert the 40,000+ lines of code to C, rather
we upgraded from Fortran77 to the modern Fortran90. The new version has
dynamic-memory allocation, pointers, etc., and is back-compatible with
Fortran77. We wrote a Perl script to perform most of the conversion
automatically, fixing a few details by hand and changing memory allocations
from static to dynamic. Unfortunately, to our knowledge no free Fortran90
compiler is currently available under Linux. The GNU g77 and f2c packages only
support Fortran77. So, we had to buy a commercial package, pgf90 from The
Portland Group, pgroup.com. This is the only non-open-source component in
our cluster.

A limitation of PC clusters is the problem of system administration and
maintenance. Using hundreds of PCs, one increases the probability of
hardware or software failure of nodes. In the case of a hardware problem, the
nice thing about PCs is that parts are standard and can be bought and replaced
in a matter of hours. Therefore, the cost associated with maintenance is low
compared to expensive maintenance contracts researchers used to need for
classic supercomputers.

Software maintenance is more of an issue—with 156 nodes, how do you make
sure they are all working properly? How do you install new software? How do
you monitor the performance of a job that is running? When we installed the
cluster, we wrote scripts that collected information from the nodes by sending
rsh commands. Since then, universities like Berkeley and companies like VA
Linux have developed efficient software packages for cluster monitoring and
have made them open source. We use a node-cloning package called
SystemImager from VA Linux (valinux.com) to do software upgrades. With this
package we only need to upgrade the first node manually. Then the package
uses rsync and tftp commands to copy (or clone) the changes to the other 155
nodes in a matter of minutes. To monitor the cluster and the jobs that are
running, we use the Ganglia package from Matt Massie at Berkeley
(millennium.berkeley.edu/ganglia), which is a fast and convenient package that
uses a system of dæmons to send information about the state of each node to
the front end, where it is gathered and displayed.

In Figure 6, we show a Tcl/Tk interface to the Ganglia package. The GUI we use
is based on another open-source package, bWatch by Jacek Radajewski
(sci.usq.edu.au/staff/jacek/bWatch). We modified it for our needs and to use
Ganglia instead of standard rsh commands for much faster access to the
nodes. Also, VA Linux has recently released the VACM package (VA Cluster
Management), which we have not yet installed.

http://www.pgroup.com
http://www.valinux.com
http://www.millennium.berkeley.edu/ganglia
http://www.sci.usq.edu.au/staff/jacek/bWatch
https://secure2.linuxjournal.com/ljarchive/LJ/090/4671f6.large.jpg

Figure 6. Monitoring with Ganglia

Bolivia Shakes and Moves

On June 9, 1994, a huge earthquake with a magnitude of 8.2 on the open
Richter scale occurred in Bolivia, at a depth of 641 km (400 miles). Most
earthquakes occur at much shallower depths, usually less than 30 kilometers.
This event in Bolivia was one of the largest deep earthquakes ever recorded.
Due to its unusual characteristics, this earthquake has become the subject of
numerous studies in the seismological community. We tried to simulate this
event on our cluster.

Figure 7 shows a still of the ground shaking (displacement of the Earth at a
given location due to the passage of a seismic wave generated by the
earthquake). The epicenter in Bolivia is indicated by the purple triangle. The
waves travel inside and along the surface of the Earth. They can be seen
propagating across the United States, for instance. A permanent displacement
is visible at the surface of the Earth around Bolivia, extending as far as the
Amazon river to the north. This effect, which was recorded by several seismic
stations in Bolivia, is called the “static offset”. The earthquake was so big that it
moved the ground permanently by a few millimeters. The vertical displacement
reached up to 7mm, i.e., ¼“ to the south). It is correctly reproduced by our
code.

https://secure2.linuxjournal.com/ljarchive/LJ/090/4671f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/090/4671f6.large.jpg

Figure 7. Seismic Waves during the 8.2 Bolivia Earthquake

Due to the fact that the waves travel all around the globe, seismic recording
stations in other countries were able to detect the Bolivia earthquake. Figure 8
shows an actual record from a station in Pasadena, California and the
corresponding record simulated by our method. Again, the agreement is
satisfactory. At each time step, this simulation required solving a system of
equations with 500 million unknowns (also called the degrees of freedom of the
system). Simulating the propagation of seismic waves for an hour and a half
after the earthquake took 48 hours on the cluster using half of the nodes (150
processors).

Figure 8. Vertical Velocity as Recorded in Pasadena

Needless to say, our research has benefited tremendously from the power and
the reliability of Linux and from the open-source philosophy. Using a large
cluster of PCs, we are able to simulate the propagation of seismic waves
resulting from large earthquakes and reach unprecedented resolution.

Acknowledgements

Luis Rivera provided invaluable information and help for this project. We thank
Jan Lindheim, Tom Sterling, Chip Coldwell, Ken Ou, Jay Nickpour and Genevieve
Moguilny for discussions regarding the structure of the cluster. Matt Massie
added several options to his nice Ganglia package to help us monitor more

parameters on our cluster. Rusty Lusk provided some useful insight about
running MPICH on large clusters.

Resources

Dr. Dimitri Komatitsch is a senior researcher in the Division of Geological and
Planetary Sciences at the California Institute of Technology. His interests are
applied mathematics, numerical analysis and the application of computer
science to problems in geophysics and seismology.

Dr. Jeroen Tromp is a professor in the Division of Geological and Planetary
Sciences at the California Institute of Technology. He is interested in theoretical
seismology, in particular seismology at the scale of the Earth. Recently he has
focused on numerical modeling of seismic wave propagation.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/090/4671s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/toc090.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Distribution Upgrades

David A. Bandel

Issue #90, October 2001

David enjoys having it all his way—free meds, burning CDs and more.

As I write this it looks like all the players have weighed in with their new
distribution offerings. I've checked out my favorites and found them all
wanting, but still a site better than those from the past. This time, though, I've
noticed what I would consider a lot more griping and general discontent than
before among the user community. I always figured new releases were a time
of rejoicing that someone else went to the trouble of upgrading everything for
me. Last time around I seem to recall a lot of whining about the distros
installing with everything in the world turned on (Telnet, FTP, etc.). The distros
heard this and tightened down. Now I hear the same gripe, only this time it's
because nothing (or almost nothing) is turned on by default. Guess some things
just never change. But I for one am enjoying the moment, discovering where
the engineers squirreled away all the scripts and configuration files this time.
It'll soon be old hat. And when I've got the half-dozen distros I'm running here
down pat, I guess I'll just have to go check out the other 112-plus. I feel like a
kid at Burger King, having it all my way. Gee, it's great to be running Linux.

FreeMED freemed.org

The FreeMED program is striving for ISO9000 compliance with a complete
package for a medical practice or hospital. It's not there yet, lacking several
major features, but looks good, performs well and is quite easy to install. For
security, just drop this into your secure web document root and go. Requires:
web server w/ PHP4 and MySQL support, MySQL server, phpwebtools, web
browser.

EthStatus ethstatus.calle69.net

If you want to monitor the status of one or more Ethernet interfaces in a
system, this small utility is for you. It will show you, both graphically and in

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.freemed.org
http://ethstatus.calle69.net

numbers, what your interface is doing and even whether it's up or down. The
author has included a small utility to set up startup at boot. But even if you
don't have one of the distributions mentioned, you can set it up. Output can be
sent to an unused VT for monitoring at any time by anyone. Requires:
libncurses, glibc.

Sysmon sysmon.org

If you have a lot of systems you need to watch, Sysmon can handle them all
fairly easily. Designed for a NOC (network operations center), you set up one
system as your monitoring station running the sysmon dæmon, and you can
check it via the sysmon client from anywhere on your network. The most
difficult part is the configuration, which isn't well documented, so novices may
find setup daunting. Requires: libresolv, libnsl, libncurses, glibc.

wavemon jm-music.de/projects.html

If any of you use a wireless network, you are almost certainly aware of the
paucity of tools for these cards. Well, for those using the WaveLAN or similar, at
least one tool is available. While wavemon isn't a panacea; it's a start. It works
for a myriad of cards, including the Lucent Orinoco and many others. Now, if
some tool would just allow this card to be used under Linux as an access point.
Requires: libm, libncurses, glibc.

popaccess ftp.innercite.com/pub/popaccess

I know many administrators face the problem of allowing only certain
authorized individuals access to their mail server without making it a relay for
low-life spammers. But when your road warriors are traveling, or, like me, you
have folks who access the server from all over the world, you need something.
What I liked about popaccess is that it's all in one file, not three or four.
Configuration is simple and it works. Requires: Perl, perl module IO::Seekable.

SimpleCDR ogre.rocky-road.net/cdr.shtml

I have nothing against xcdroast. I also have nothing against X. But sometimes
working from a TTY is faster or easier, so often I do. SimpleCDR works in most
any environment but is particularly well suited to a VT. It won't burn your CD
any faster, but you don't need to fire up X to use it. Requires: libncurses,
libstdc++, libm, glibc.

multiCD multicd.rmdashrf.org

Sometimes, you just need to create multiple CDs. Most systems I've worked on
would require several CDs if you wanted to use them for backups. multiCD was

http://www.sysmon.org
http://www.jm-music.de/projects.html
ftp://ftp.innercite.com/pub/popaccess
http://ogre.rocky-road.net/cdr.shtml
http://multicd.rmdashrf.org

made just for that purpose. Even as it's burning one CD, it can be creating the
next so that burning can continue uninterrupted. For obvious reasons, this
won't work on a slow system. Requires: Perl.

IC-RADIUS radius.innercite.com

If you require a RADIUS server, for whatever purpose, you'll at least want to
take a look at IC-RADIUS. Once installed, all administration is performed
through a web browser (though you'll want a secure server to perform remote
administration). You can create groups, users, view statistics and more.
Network logins via dialup are very fast. Requires: MySQL, libmysqlclient, libm,
libcrypt, libnsl, libz, glibc.

Until next month.

David A. Bandel (dbandel@pananix.com) is a Linux/UNIX consultant currently
living in the Republic of Panama. He is coauthor of Que Special Edition: Using
Caldera OpenLinux.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://radius.innercite.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/toc090.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Naming Open-Source Software

Lawrence Rosen

Issue #90, October 2001

The value and importance of trademarks.

Suppose your favorite lunch spot offered you a glass of sweetened, carbonated
water, caramel-colored, with natural and artificial flavors and caffeine. Would
you drink it? Would you want to know who made it? Would you want to know in
advance that your drink will taste like the sweetened, carbonated water that
you enjoyed so much several days earlier?

Now, supposed your favorite lunch spot offered you a Pepsi. Would your
questions about quality (good or bad) and product consistency suddenly go
away? What would you select if given the choice between a Coca-Cola and a
Melvyn's Cola? Would you be more likely to select a product simply because
you are familiar with its name and reputation?

We are all caught up in marketing. Television and other advertising media
continually inundate us with product names that we almost automatically add
to our vocabulary, as if they were words in the English language. But these
product names are not words in the traditional sense, nor are they intended to
be so used. Terms like Windows, Apple, Java, Apache, Linux, Jabber and JBoss
are marketing names—trademarks. When carefully selected and protected, and
through effective marketing, trademarks can become badges of quality,
expertise and reputation.

Trademarks are potentially among the most valuable assets of companies that
market free and open-source software. For some projects, a trademark is much
more important than the license under which the software is distributed.

Trademarks are a form of intellectual property, but they are very different from
patents, which protect invention; copyrights, which protect expression; and
trade secrets, which protect a company's confidential information. Trademarks

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

are brand names of products or services. They serve to protect the reputation
of a product.

More specifically, a trademark is a word, name, symbol or device used to
identify a company's products and to distinguish those products from the
competition. A service mark is the same as a trademark except it is used to
identify and distinguish services rather than products. A trade name identifies a
company rather than that company's individual products or services. The same
symbol might function as a trademark, a service mark and a trade name,
depending on the context in which it is used. Here I will generally use the term
trademark and ignore the subtle distinctions of service marks and trade names.

A company doesn't acquire trademark rights simply by choosing a trademark or
even by stating its intent to use it. Trademarks (or service marks) in the United
States are established by actual use in conjunction with specific goods (or
services). There are advantages to registering trademarks with the US Patent
and Trademark Office, but registration alone doesn't make a trademark valid or
valuable. Only actual use of a trademark on goods, and a marketing campaign
to breed familiarity among consumers, can create a valid and valuable
trademark.

Free and open-source products pose difficult marketing problems. The licenses
under which such products are distributed require the distribution of source
code and permit the creation and distribution of derivative works. It is difficult
for a distributor of such products to compete on price alone because almost
any knowledgeable company can undercut the price by simply copying the
original software.

Trademarks can be particularly useful in this kind of environment. First, a
company needs to demonstrate that its software is of high quality, reliable,
efficient, feature-rich and user-friendly. It can promise continual
enhancements, product support, user groups and undertake other goodwill-
creating activities. Then over time, through marketing efforts, that company's
customers will begin to associate its trademarks and service marks with those
products and services. New or repeat customers will pay for goods and services
they perceive to be worth the price, and they will select preferentially products
whose trademarks they identify.

Trademarks can also limit certain kinds of forking of free and open-source
code. While your software license may allow others to make derivative works of
your code, the license doesn't allow (indeed, there is a legal reason why it
cannot allow) others to apply your trademark to their derivative works.

In any industry where it is not technically difficult to create a new product,
whether it be the cola beverage industry or the free and open-source software
industry, trademarks and service marks can provide the best protection for a
company's products and services.

We see this every day when customers order Coca-Cola and Pepsi rather than
Melvyn's Cola. That is why customers buy Red Hat Linux rather than El Cheapo
Linux. That is why Apache servers dominate the Web, rather than servers based
on generic copies of the Apache code.

And that is why, if you are wise in selecting, perfecting and using your
trademarks and service marks, you can protect the market for your free and
open-source software products from competitors who merely want to copy
your work and make money off your well-earned goodwill.

In future articles, I will describe how you should select a good trademark and
explain what you need to do to use it and protect it properly.

Legal advice must be provided in the course of an attorney-client relationship
specifically with reference to all the facts of a particular situation and to the law
in your jurisdiction. Even though an attorney wrote this article, the information
in this article must not be relied upon as a substitute for obtaining specific legal
advice from a licensed attorney.

Lawrence Rosen is an attorney in private practice in Redwood City, California
(rosenlaw.com). He is also executive director and general counsel for Open
Source Initiative, which manages and promotes the Open Source Definition
(www.opensource.org).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.rosenlaw.com
http://www.opensource.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/toc090.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Bazaar Way to Bet

Doc Searls

Issue #90, October 2001

Linux—more popular than Jesus? According to Google's authoritative search
engine—yes.

If Google isn't already the number one search engine, it might as well be. What
else is there? Even Yahoo gave up and started OEMing Google a few months
back. They've got 10,000-plus Linux boxes sending out bots that crawl over 1.3
billion pages and bring back results so complete that every page is cached in
searchable form. They're also on top of images and Usenet groups in a huge
way, even though they hardly publicize either while they continue (at this
writing) to tweak the systems publicly as beta.

Advertising on Google has more in common with your newspaper's classifieds
than with anything on billboards, magazines or TV screens. This observation is
meant as flattery. They are about the only form of advertising that enjoys
positive demand, which means Google stands a chance of becoming the first
outfit to create a form of web-based advertising that users welcome—no mean
feat if they pull it off.

Their search results are relevanced (how's that for a neoverb?) by inbound links
rather than by clever metatags and other sneaky HTML hacks on the searched
pages. If anything, Google measures authority more than anything else. Since
linking isn't an automatic matter with most text processing software, it takes a
conscious effort for an author to point. Therefore, Google's thinking (roughly)
goes, every link to a page is a vote by an interested human being for the value
of the pointed-to page as a source.

Google calls its system “a unique combination of hardware and software”.
Specifically, it's ten thousand boxes running Linux. We all know the technical
answer to the “Why Linux?” question. There's an obvious economic one too: it's
cheap to deploy on commodity hardware. More importantly, it lowers the
threshold of deployment. It was easier for Google's creators to imagine the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

service running on Linux than on anything else. But finally, Google provides a
democratic answer with its own search results.

See, in addition to ranking search results, Google also lists the number of
unique pages found to contain the search term (or terms). When I looked a few
minutes ago (when putting together the LJ Index, where these sort of numbers
are also posted), Google found 31.6 million pages containing the word “linux”.
Let's put this in perspective:

• active x: 2,350,000
• python: 2,080,000
• gates: 3,020,000
• kde: 3,560,000
• gnome: 3,720,000
• perl: 7,650,000
• jesus: 8,800,000
• boy: 10,800,000
• solution: 13,300,000
• market:31,200,000
• girl: 13,600,000
• microsoft: 20,200,000
• god: 24,300,000
• sun: 25,500,000
• sex: 28,400,000
• linux: 31,600,000
• business: 86,900,000
• have: 231,000,000
• naked:8,080,000
• Tcl:1,910,000
• foobar: 113,000
• hampster dance:8,930

On that last one, the top two (out of 231 million) were LinuxGames.com and
Richard Stallman's Why Software Should Not Have Owners page.

If markets are conversations, what does this say about the Linux market? Is this
market—our bazaar—really bigger than sex and Microsoft?

Apparently.

Why? Because there's a lot to talk about and keep talking about; because it
constantly changes. No matter how important Microsoft continues to make
itself (by expertly leveraging its incumbent importance), the company's
protectiveness about its intellectual property puts a lid on the quantity of
Microsoft subjects one can talk about.

There is a limit to how deeply one can enjoy expertise in—or involvement with
—Microsoft software. Where a significant hunk of Microsoft intellectual
property is nobody's business, all of Linux is anybody's business.

Which means Linux, as a topic of expertise, is better for business than
Microsoft, or any other commercial software company that limits conversation
around the very software on which it wants everybody to depend.

This is what we need to remember when we speculate about the viability of
Linux companies. A lot of them got clobbered in the dot-com bust, along with
everybody else. If we want to put our trust in market forces, it's pretty hard to
ignore one of the world's biggest conversations.

Doc Searls is senior editor of Linux Journal and coauthor of The Cluetrain
Manifesto. His next book will be Real Markets: What They Are and How They
Work.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/toc090.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Robots Are Coming, The Robots Are Coming

Rick Lehrbaum

Issue #90, October 2001

Linux takes over the world, one step at a time—with smaller footprints and
larger funding.

Isamu stands 53 inches tall, weighs 121 pounds and walks at over one mile per
hour. Not only that, Isamu climbs up and down stairs, carries four-pound
objects in its handlike grippers, and even recognizes human faces via its dual-
camera stereo vision system. Isamu also has a brain, which consists of a dual-
Pentium embedded computer running RTLinux.

Isamu is the product of a joint project of the University of Tokyo's Jouhou
System Kougaku Laboratory (JSK Lab) and the Aircraft and Mechanical Systems
Division of Kawada Industries, Inc. (Tokyo, Japan). The goal of the project is to
develop testbeds for research on “human interactive motion control
technology”. For example, Kawada Industries plans to explore possible

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

commercial applications in markets such as construction systems, disaster
relief, aids for the disabled, rehabilitation and training devices, and
amusement.

In order to mimic humanlike movement, Isamu has thirty-five degrees of
freedom: six for each leg, one for each foot (a toe joint), seven for each arm,
one for each gripper, two for the neck and three for the eyes. The on-board
computer, equipped with dual 750MHz Pentium III processors running RTLinux,
provides real-time servo and balance compensation, and coordinates the
robot's 3-D vision and motion-planning software modules.

Thanks to an ample battery pack, a wireless Ethernet interface and the
powerful on-board computer, Isamu can operate without the need for external
cables or constant human intervention. A joystick can be used to direct the
robot's movements when human control is desired.

Isamu's bipedal walk, control-system software was developed by the JSK Lab,
while the hardware and robotics structures, including the servo-based, level
control system, were developed by Kawada Industries. Kawada applied aircraft
technologies to the body frame, resulting in a strong and light structure. Visit
the JSK Lab's web site (jsk.t.u-tokyo.ac.jp), where you can view some amazing
videos showing some of the things Isamu can do.

Linux Upgrade for the Palm III

Empower Technologies has announced what it calls “the world's first major
operating system upgrade for Palm IIIx and IIIxe handhelds”. A preliminary
demo version of Linux DA is available for free download from the company's
web site. Although the demo version is limited to only the most basic PDA
functions (address, schedule, calculator, notepad and a few games), the
commercial version will add functions such as web browsing, e-mail,
multimedia and a lot more. The company says its Linux DA was derived from
the standard Linux kernel, with the addition of homegrown software for a GUI,
database, power management, boot loader, Flash loader, data sync, IrDA and
PIM functions. See empower-technologies.com for details.

Transvirtual Nets Four Million Dollars in Investment, Launches

XOE Device Platform

Transvirtual Technologies, Inc. has closed a four-million-dollar funding round
and is using much of the new capital to launch a new Java/XML-based
information appliance platform, called eXtensible Operating Environment
(XOE). XOE (pronounced “zo' ee”) evolved Transvirtual's PocketLinux Linux/Java
environment for handheld computers, along with a number of XML-based

http://www.jsk.t.u-tokyo.ac.jp
http://www.empower-technologies.com

client and server functions. The result, according to Transvirtual, is “a faster,
cheaper and more flexible solution specifically engineered for small, resource-
constrained information appliances such as PDAs, web-enabled mobile phones,
automotive telematics and TV settop boxes”. Although initially targeted to
embedded Linux-based devices, XOE will eventually support other embedded
OSes as well. See transvirtual.com for details.

Linux in 27 × 27mm

Axis Communications, maker of the ETRAX system-on-chip, has integrated over
50 components into a multichip module (MCM) in a standard 27 × 27mm PBGA
IC package. Axis says just two external components are needed to end up with
a fully functional Linux system: a 20MHz crystal and a source of 3.3 V power.
The new MCM contains Axis' ETRAX 100LX RISC-based system-on-chip
processor, plus all the most common components normally put in designs
based on the device, such as DRAM, Flash, an Ethernet transceiver and “glue”
components. Axis says it has run Linux and a small application program
successfully, entirely within the MCM's built-in 2MB Flash and 8MB SDRAM. A
development board and sample schematics of typical applications for the
device are available. Samples are expected in this month. Pricing has yet to be
finalized but is expected to be in the range of $50 US (10K units) to $75 (single
units). See developer.axis.com for details.

email: rick@linuxdevices.com

Rick Lehrbaum (rick@linuxdevices.com) created the LinuxDevices.com
“embedded Linux portal”. Rick has worked in the field of embedded systems
since 1979. He cofounded Ampro Computers, founded the PC/104 Consortium
and was instrumental in creating and launching the Embedded Linux
Consortium.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.transvirtual.com
http://developer.axis.com
mailto:rick@linuxdevices.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/toc090.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Microlite BackupEDGE Version 01.01.08

Charles Curley

Issue #90, October 2001

BackupEDGE from Microlite is an excellent backup product.

BackupEDGE from Microlite is an excellent backup product. It has a flexible
command-line and menu interface, will back up over networks and can be used
for disaster recovery. Documentation is extensive and readily available. It is a
proprietary product, priced competitively. BackupEDGE uses existing utilities in
Linux, such as rsh or ssh and crontab for its operations, making it easier to
adjust BackupEDGE to live with other programs.

Installation

The product is delivered on CD-ROM. If your target computer does not have a
CD-ROM drive, you can make installation floppies on another computer from
the CD-ROM. You can even make floppies using that other operating system
from Redmond, and you can get a 60-day evaluation copy via FTP. If you decide
to buy, Microlite will send you a key that makes your evaluation copy
permanent.

The installation script is easy to use. It is a command-line script with character
graphics (see Figure 1), similar to the main program. Arrow keys move the
cursor from field to field, but the tab key may not. I found the inconsistent
responses to the Tab key to be disconcerting. For text entry, you can toggle
between insert and overwrite modes using the Insert key on a standard PC
keyboard, which is very nice. I used that capability to prepend the type of drive
to the description of each tape drive. On-line help is readily available during
both installation and normal usage (see Figure 2).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/090/4691f1.large.jpg

Figure 1. Installation Script Welcome Screen

Figure 2. Installation Script with On-Line Help

The installation does an excellent job of determining what tape drives you have.
It correctly identified both of my SCSI tape drives, probably by reading the /proc
filesystem. The installation script also will detect whether your tape drive will do
fast seeks and what the threshold for changing to a fast seek might be (see
Figure 3). Fast seeks are great for restoring one or just a few files, a common
restoration scenario. The installation is the best tape-drive characterization
process I've seen on Linux so far.

https://secure2.linuxjournal.com/ljarchive/LJ/090/4691f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/090/4691f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/090/4691f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/090/4691f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/090/4691f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/090/4691f3.large.jpg

Figure 3. Installation Script Determining Fast Forward Threshold

The installation script will even set up a background task to check for sparse
files (Microlite calls them “virtual files”). Correct handling of sparse files can save
vast amounts of media on backup and even greater amounts on restore. For
those systems that have sparse files, lack of proper sparse-file handling can
rule out a backup product. Unfortunately, on both of my testbed computers,
the search program failed with an error number but no real explanation why.
Fortunately, there is a text file of sparse files you can hack, and Microlite
documented doing so. BackupEDGE also supports raw filesystem partitions,
useful for database servers.

The installation even put an icon on my KDE desktop. A simple hack to the shell
script launched by the icon allowed me to fix the font size, a necessity for us
geriatric penguinistas.

The Program

The first thing I did after installation was fire up the program, edgemenu, from
the command line (see Figure 4). The program's color scheme, a blue
background with gray characters, reminded me of Colorado Memory Systems
DOS-based menus of ancient history. Your choices for color schemes appears
to be gray on light blue or monochrome. Sometimes when exiting edgemenu, it
leaves its color scheme on both the KDE konsole and xterm. Big deal, I can live
with this for reliable backups.

https://secure2.linuxjournal.com/ljarchive/LJ/090/4691f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/090/4691f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/090/4691f4.large.jpg

Figure 4. edgemenu

There is a full command-line capability, rather like tar, and “man edge” lists all
the options available. Also, since the console-mode menu program is a front
end for the command-line programs, you can study the commands it produces.

You can easily schedule automatic backups with the edgemenu program. It
installs the backups into root's crontab, making it easy for you to adjust the
backup in order to play with other cron jobs.

Backing Up

Naturally, the first thing I tried to do was a small test backup of about 9MB
using my /etc directory. When I first tried this, the backup failed. Possibly the
scan for sparse files affected the SCSI host adaptor. In any case, once I
rebooted my system, I got successful backups on both of my tape drives.

The reason for the reboot was that I used another computer to test backups
over the network, a process Microlite calls “remote backups”. I reconfigured
BackupEDGE to use ssh because I already have ssh working with public key
authentication, thus allowing secure transfers of data without passwords. I was
able to configure the client machine and start a backup, but it locked up the
server. Oops. After rebooting the server, I was able to back up on the server,
but not on the client. My second attempt did not crash the server, which was an
improvement. You also can use any host to administer another host.
Apparently, the rsh or ssh connection is made and broken over the course of a
session, so you may have waits while hosts authenticate.

https://secure2.linuxjournal.com/ljarchive/LJ/090/4691f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/090/4691f4.large.jpg

Verification

Verifications can be done against the original file or by checking the CRC
checksums stored with the data. The latter is useful for verifying a file after the
original has changed. It is also a quick-and-dirty acceptance test of tape-drive
head alignment, which is useful for less expensive tape drives, like some of the
QIC offerings. Verification can be done as a routine part of the backup process,
which is great.

Restoration

Restoration is easily done from the edgemenu program. You can restore
redirected files to another location via any of the three interfaces. For the GUI
addicts, there is an X-based restore tool, edge.emx (see Figure 5), that you may
launch from edgemenu. It is suited for restoring individual files. Selecting a
directory also selects the files and directories under it, if the directory is not
expanded. The process is simple enough: select a database and click on it. Click
your way down the tree until you select all the files you want. Click on Transfer
to add the selected files to the restore window. Then click on Restore to restore
the data.

Figure 5. edge.emx

Documentation

The manual is large, over 270 pages. With reasonably large type and a fair
amount of white space, it is easy to read. Seventy pages of the manual
duplicates the man pages, and some of that is for operating systems other than
Linux. Then there is another 130 pages of documentation on the crash recovery
software. A good contents page is provided in each volume, but the index is a

https://secure2.linuxjournal.com/ljarchive/LJ/090/4691f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/090/4691f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/090/4691f5.large.jpg

bit sparse. For example, there is no entry for sparse files, and you have to
already know that Microlite calls them “virtual files”. Overall, the documentation
is plentiful, extensive, conversational and easy to read. Microlite gets an “A”
here.

Part of the documentation expands on error messages. When a program
produces a terse error message, you can look it up in the documentation and
get a more detailed explanation. Other software vendors should learn to do
this.

The documentation even tells you how to customize some aspects of
BackupEDGE. For example, remote backups are done using rsh. However, the
exact steps you need to take in order to use ssh are documented.

Support

Customer support is provided via e-mail, phone, fax or web site. There is no e-
mail list that allows customers to exchange experiences directly. I did run into
one problem that led me to customer support: I tried to substitute ssh for rsh.
We never did get that to work, possibly because I took sick while trying to
debug this problem. The support I got was polite but appeared to be
perfunctory. E-mail responses were timely and had I not gotten sick, we
probably would have gotten ssh working in time for this review.

Disaster Recovery

Disaster recovery should be very easy to do with RecoverEDGE, BackupEDGE's
disaster recovery software, once you have it set up. I say “should be” only
because I actually have not tested the restore process. Using HP's OBDR
(basically a bootable tape drive) or a floppy disk set you build with BackupEDGE,
you can make a backup tape for disaster recovery. When you need it, boot to
the floppy or tape drive and away you go. The Microlite RecoverEDGE software
will also adjust your partition sizes as needed in case you are restoring to a
larger hard drive. Even machines that back up over the Net can use
RecoverEDGE, which is more than you can do with OBDR.

Please note: the current version of this product was not available at the time of
this writing.

Product Information/The Good/The Bad

Charles Curley (w3.trib.com/~ccurley“) is a freelance software engineer, writer
and occasional cowpoke in the wilds of Wyoming.

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/090/4691s1.html
http://w3.trib.com/~ccurley
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/toc090.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters

Various

Issue #90, October 2001

Readers sound off.

Lay off the Object Pascal

As a longtime Delphi developer I've been reading everything I can find about
Kylix in anticipation of trying it out one of these days. However, I was
disappointed in Petr Sorfa's review of the product (LJ August 2001 issue), in
particular with his unsupported assertion that “the main problem, of course, is
the Object Pascal programming language itself.”

If that's the main problem with the product, at least say why. As far as I can tell
from the review his major problem with the language was “getting used to the
:= symbol for assigning variable values”. Big deal—all new languages take some
getting used to.

Methinks there's some C++ snobbery here. Object Pascal is, admittedly, a
proprietary language (like Java), which is what he may be getting at. However, it
is a full-featured, object-oriented language similar to Java in features and
general approach (with the exception of Java's automatic garbage collection). I
think it deserves a little respect.

—Tom HavilandTHAVILAN@suss.com

Geek Disclaimer

I've been interested to read the Geek Law column in the last couple of issues of
LJ. While I wasn't surprised to see a disclaimer at the end of each column, I was
surprised that there's no mention of the advice being relevant only to the US
legal system. While the articles so far have mentioned Congress and the US, I
think it would be helpful for it to be stated explicitly that the author is writing
from the point of US law.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Even in the UK (from where I am writing), we have three different judicial
systems: one for England and Wales, one for Scotland and one for Northern
Ireland. There's no guarantee that something that is legal in England and Wales
is legal in Scotland, for example.

—Martin Radfordmartin@zamenhof.demon.co.uk

Who says one voice can't make a difference? Larry reminds us that not only
does law vary nation to nation, but even within the US from state to state. He
has modified the disclaimer.

—Editor

Ditch the French

I have to comment on the Cooking with Linux column by Marcel Gagné. The
French chef gag is funny for about two minutes. Then it becomes tiresome.
Another few minutes and it becomes downright irritating. By the time I finish a
column, I'm ready to lock François in the wine cellar and throw away the key. So
I seldom finish the column, which is a shame because otherwise it's well written
and interesting. Please, Marcel, consider ditching the gag.

—Daniel D. Jonesetc-daniel.d.jones@cnet.navy.mil

Mon cher ami, perhaps the ungarnished and simple shipboard food you enjoy
in the navy has influenced your palate. Some people like a little French
seasoning with their technical staples. Linux isn't all free bière—un peu du vin
est nécessaire aussi.

—Editor

Surprised but Unoffended

I am surprised that one of your readers should be offended by a biblical
reference in the June 2001 Best of Technical Support, page 96. Perhaps Noel
Moss has nothing better to do than to take it upon him/herself to try to curtail
the author's first amendment right to freedom of the press, regardless of
literary intent. I'm certain the reader would not have been offended if the
reference had come from the Koran, or the Book of the Dead, rather than the
Bible. I read Linux Journal cover to cover and have not once been offended by
its content. Keep up the good work.

—Paul Barkerpdbarker@nevinslake.com

Thanks Paul, I was beginning to think there were no unoffended readers left.

—Editor

Searching for Open Kylix

The August 2001 issue of Linux Journal stated:

There are three editions of Kylix: Open, which is
available for free (downloadable) for noncommercial
GPL development (or $99 US for a hard copy version);
Developer, for commercial use with a limited number
of features and components ($999); and Server, with
all of the features and components ($1,999).

I have reviewed most of the Borland web site (including
community.borland.com) and can't seem to locate any but the trial edition of
Kylix for download. How can I find this open (GPL) edition for download?

—Brinkley Harrellbrinkley@fusemeister.com

Kylix Open Edition was released only recently and is now available at
borland.com/kylix/openedition.

—Editor

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://community.borland.com
http://www.borland.com/kylix/openedition
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/toc090.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

upFRONT

Various

Issue #90, October 2001

Stop the Presses, LJ Index and more.

Postscript to This Month's Geek Law Column

Shortly after I wrote this month's article I went to the O'Reilly Open Source
Convention in San Diego. There, on a display table in the exhibit hall, I found
cans of a beverage containing carbonated water, corn syrup, caramel color and
caffeine, proudly bearing the trademark “Open Cola”. Five cents from every can
of Open Cola will be donated to the Free Software Foundation. So it does
matter which brand of cola you drink! By the way, the recipe for Open Cola is
available under the GPL; see opencola.com.

LJ Index—October 2001

1. Total compensation in billions of dollars for the top executives at the top
807 companies in Silicon Valley in the last fiscal year: 4.8

2. Above number as a multiple of the prior year: 2
3. Percentage of decline in stock prices of the MN 150 Index, which tracks

the largest Silicon Valley companies over the same period: 24
4. Number of times the word “shit” appears in the first “South Park” program

of the latest season on Comedy Central, according to an odometer that
displayed a running count on the screen: 142

5. Number of e-mails received by Comedy Central in response to the same
“South Park” episode: 4

6. Percentage of received e-mails supportive of profanity in the episode: 100
7. Number of patents issued in the year 2000 by the United States Patent

and Trademark Office: 158,118
8. Position of IBM among companies receiving US patents in 2000: 1
9. Number of US patents issued to IBM: 2,886

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.opencola.com

10. Number of US companies in the top ten recipients of US patents in 2000:
4

11. Number of Japanese companies in the same top ten: 6
12. Losses in millions of dollars by Webvan when it went Chapter 11 in July

2001: 860
13. Number of pages crawled by Google: 1,346,966,000
14. Number of Google-searched pages in which “sun” appears: 25,500,000
15. Number of Google-searched pages in which “microsoft” appears:

20,200,000
16. Number of Google-searched pages in which “dell” appears: 14,700,000
17. Number of Google-searched pages in which “solution” appears:

13,300,000
18. Number of Google-searched pages in which “ibm” appears: 11,200,000
19. Number of Google-searched pages in which “unix” appears: 10,900,000
20. Number of Google-searched pages in which “perl” appears: 7,650,000
21. Number of Google-searched pages in which “python” appears: 2,070,000
22. Number of Google-searched pages in which “linux” appears: 31,600,000
23. Linux-referenced pages per thousand Google finds on the Web: 2.35

Sources

• 1-3: San Jose Mercury News

• 4-6: The New Yorker
• 7-11: United States Patent and Trademark Office

• 12: The Wall Street Journal
• 13-23: Google, July 12, 2001

Windows Server Gains Appear to Be at Sun's Expense

Netcraft's July Web Server Survey (netcraft.com/survey) showed a huge jump in
Microsoft IIS' share of web server software usage on 31,299,592 surveyed net-
connected computers. After reaching a plateau of around 20% in 1998, IIS
suddenly jumped nearly 5% to 25.88%. Apache reciprocally declined by 4.29%
to 58.73%. Microsoft's gain represented about 2% of all active sites on the Web.

Netcraft attributed the gain to a single event: the conversion of domain
registrar Namezero's servers from Solaris to Windows 2000 and from Apache
to IIS, along with a related move by part of Network Solutions' domain
registration system. Network Solutions also moved physically from Digex to
Interland (where Microsoft has held a minority interest). “These large
installations had previously been masking a general decline in Solaris share on
the Web, which is now down four percentage points over the last year”,

http://www.netcraft.com/survey

Netcraft reported. “Additionally, the Network Solutions site was by far the
largest Netscape-Enterprise installation in terms of numbers of hostnames, and
one would expect that Netscape-Enterprise overall share will drop toward the
2-2.5% it has in the active sites analysis over the next few months.”

The previous month's survey also showed a shift in Windows' direction, again at
Solaris' expense. In that survey, which attempted to count computers rather
than hosts, Netcraft found that 49% of the surveyed computers were running
Windows. Linux accounts for about 28%. And, all UNIX-related computers
accounted for 45%. The remaining 6% were non-UNIX or unknown. “As some of
the 3.6% of computers not identified by Netcraft operating system detector will
in reality be Windows systems”, Netcraft reported, “it would be fair to say about
half of public web servers world-wide are run on Microsoft operating systems.”

Netcraft also reported that Linux “has been consistently gaining share since this
survey started but, interestingly, not significantly to Windows' detriment.
Operating systems that have lost share have been Solaris and other proprietary
operating systems, and to a small degree BSD.”

The significant interpretation of the data, Netcraft suggests, is that Solaris is
“being continually chased further and further up market by Intel-based
operating systems, with Sun in turn progressively eliminating the other
proprietary UNIX operating systems.”

—Doc Searls

OpenPGP Signatures: the New Baseball Cards?

How well-connected are you? Drew Streib can tell you to four decimal places.
Drew, who now runs an OpenPGP keyserver in addition to his other thankless
tasks, is currently publishing monthly reports on how closely OpenPGP users
are connected to the Web of Trust. His math, based on earlier calculations by
Neal McBurnett, is complicated, but the result is a current map of the
community's Web of Trust.

Closest to the center of the Web are crypto luminaries and organizers of keys-
signing events, including Peter N. Wan, Ingmar Camphausen and Theodore
Ts'o. Philip R. Zimmermann, who wrote the original PGP, is only number 24.

Drew's report comes at an exciting time for encrypted mail. GNU Privacy Guard,
a free OpenPGP implementation, is available in common distributions, support
in popular mailers such as mutt makes encryption convenient to use and the
FBI's much-publicized Carnivore snooping system certainly hasn't hurt.

Signing people's keys to do better in Drew's rankings might seem like a
pointless game, but it really does expand the Web of Trust. You can never lose
juice by exchanging signatures with someone else, and it helps everyone's
ability to send trusted, encrypted mail. Even if you sign the key of some “lamer”
at the bottom of the list, you'll both move up next month. (As for me, I got a
Theodore Ts'o! Look out next month.)

Get started with PGP using the free implementation, GNU Privacy Guard, from
gnupg.org. Then read Drew's report at dtype.org/keyanalyze.

—Don Marti

Stop the Presses: Something to CARP about

On Monday, July 30, 2001 the US Copyright Office convened the Copyright
Arbitration Royalty Panel (yes, CARP, loc.gov/copyright/carp) to make a decision
shortly on conditions under which webcasters will be required to make royalty
payments. The results could be highly inconvenient for webcasters of all kinds.
Howard Greenstein, a webcasting pioneer, puts it this way in his weblog:

Webcasters, many of whom have been accounting for
what they have estimated they would have to pay
under a negotiated compulsory license (and putting
aside revenue for years) are about to find out (within
60 days) what it will cost them. Unless, of course, they
are an “interactive” station. If you're a standard station
under the Digital Millenium Copyright Act, you play
music in a certain way. You don't give people much
choice about what they hear.

Yet the number of streaming sources on the Net runs into uncounted
thousands (or perhaps millions). What's more, many of these are far more
interactive than traditional broadcasting has ever been or can even
comprehend. What's the news for them? Easy: work outside the system.

That's what KPIG has been doing since it became the first commercial radio
station ever to broadcast on the Web. KPIG broadcasts from (no kidding)
Freedom, California on 107-oink-5 on the FM band. On the Web, however, KPIG
is a virtual Idaho. Its 128KB MP3 stream is one of the Web's hi-fi music beacons.
So are the half-dozen or so other streams the station puts out at various
speeds for various clients and bandwidths (and with content other than KPIG
alone). Naturally (their site reports) they digitize that content on a Linux PC with
an open-source LAME MP3 encoder (mp3dev.org/mp3).

KPIG, which once described its format as “mutant cowboy rock and roll”, is one
of the few remaining commercial stations where the disc jockeys still choose
the music, and community ties are so close it's hard to tell where the station

http://www.gnupg.org
http://dtype.org/keyanalyze
http://www.loc.gov/copyright/carp
http://www.mp3dev.org/mp3

ends and its constituency begins. As a successful business (it has always done
pretty well in the ratings and sells plenty of advertising), KPIG also has managed
to remain both artist- and industry-friendly. Every song the station plays is
listed live on the Web, along with links that make it easy to buy the CD, research
the artist or follow a tour schedule. Without a doubt, KPIG owns the high-mud
mark for combining commercial success, community involvement, resourceful
use of free and open-source software and adaptiveness to a surreally perverse
environment.

The hacker in chief at KPIG is “Wild Bill” Goldsmith, one of KPIG's Founding
Farmers and the proprietor of RadioParadise.com. Unencumbered by the need
to participate in the fully regulated environment of commercial broadcasting,
Radio Paradise is beating a path through the uncharted wilderness where
artists and technically smart connoisseurs will rebuild their own industry from
the outside in. Asked for the technical angle on Radio Paradise, Bill writes:

[Radio Paradise is] based on a set of software tools—
for picking and scheduling music and doing voice
tracks from anywhere over the Net, and for accepting
and organizing listener feedback on my playlist.
Everything I'm doing software-wise is 100% open
source: Linux, PHP, Perl, Postgres, and Icecast.

I am convinced that what you see at
radioparadise.com represents the future of radio, or of
quality radio, anyway: very interactive, tightly
controlled artistically (no random segues, everything
happens for a reason)--completely free from the
influences of the radio/music industry hype machine
(to the best of my ability, anyway)--and supported
primarily by voluntary contributions from listeners.

This isn't a game plan that's going to make anyone
rich. But it can make it possible for anyone with talent
to make a very comfortable living without
compromizing their integrity in any way—and that's all
I for one have ever wanted.

I'm an old radio freak and have been a fan of KPIG and its ancestors going back
to the Sixties. Living, breathing radio stations like KPIG, run by people who love
the business more for the good it does than for the money it makes, have gone
out like candles in the rain—first one by one, then by the dozens and finally by
the thousands.

It's not surprising to find a hacker starting a bonfire with the last candle that
stands.

—Doc Searls

http://www.radioparadise.com

They Said It

Sober nations have all at once become desperate gamblers and risked almost
their existence upon the turn of a piece of paper. To trace the history of the
most prominent of these delusions is the object of the present pages. Men, it
has been well said, think in herds; it will be seen that they go mad in herds,
while they only recover their senses slowly, and one by one.

—Charles MacKay, 1841

You can't wake a person who is pretending to be asleep.

—Navajo Proverb

The artistic temperament is a disease that affects amateurs.

—G. K. Chesterton

Jetlag is evil. But not as evil as Flash.

—Deborah Branscum

Friends help you move. Real friends help you move bodies.

—polar bear on Slashdot

One night I was layin' down, I heard mama 'n papa talkin', I heard papa tell
mama, let that boy boogie-woogie, it's in him, and it got to come out. And I felt
so good, went on boogie'n just the same.

—John Lee Hooker

To suggest that the author knows best how to write effectively to each
individual reader is silly, yet that's what I understand of your position.

—John Wilcox, Microsoft employee, defending Smart Tags

Even if Smart Tags don't violate copyright or deceptive trade laws, they still
violate the integrity of the Web. Part of the appeal of the Web is that it allows
anyone to publish anything, to take their thoughts, feelings and opinions and
put them before the world with no censors or marketroids in the way. By
adding Smart Tags to web pages, Microsoft is interposing itself between
authors and their audience. Microsoft told Walter Mossberg, “The feature will
spare users from under-linked sites.” Microsoft is in effect deciding how
authors should write, and how developers should build, web sites.

—Chris Kaminski

Intellectual property (IP) has been driving the species for some five million
years. In the past 100 or so years, it's increasingly been saddled with the chore
of lining the pockets of middlemen and parasites who, sans this lining, would
lack sufficient intellect to open a can of beer.

—Tom Matrullo

The genius of you Americans is that you never make clear-cut stupid moves,
only complicated stupid moves that make us wonder at the possibility that
there may be something to them that we are missing.

—Gamel Abdul Nasser

If the business notion of best practices had been applied from the dawn of
human civilization, human beings never would have achieved civilization. Art
history would focus on things like ancient Roman bas-reliefs of the current Tide
and Cheer equivalents, the Sistine Chapel ceiling would say “Bank With Medici!”
and instead of a torch, the Statue of Liberty would be brandishing a tube of
Preparation H.

—Christopher Locke

We are natural villagers. For most of mankind's history we have lived in very
small communities in which we knew everybody and everybody knew us. But
gradually there grew to be far too many of us, and our communities became
too large and disparate for us to be able to feel a part of them, and our
technologies were unequal to the task of drawing us together. But that is
changing.

—Douglas Adams

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/toc090.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Brains, Not Trains

Richard Vernon

Issue #90, October 2001

Artificial Intelligence: where will it end? Not at the movies!

This month's focus on engineering turned out to be pretty exciting, what with
articles on wind tunnels and lasers. We thought we'd put some nice destructive
lasers burning through steel (or space shuttles) on our cover, but Brian
Gollsneider at the Army Research Lab at Adelphi, Maryland informed me that
the lasers with which they work have an 850nm wavelength intended for
communication purposes only and are outside the range of human visibility.
Being a “journal”, we like to keep our covers realistic and article-related
(remember the little man inside the computer on the February 2001 issue?). So
we went with the skier.

As Marcel Gagné reminds us in his column this month, engineers have
traditionally been conceived as people who drive trains (hence the notion of
chemical engineers as those who take drugs and drive trains). But as this
month's articles show, most engineers seem to have abandoned internal
combustion and moved to other types of engines. Rick Lehrbaum reveals
Isamu, a robot with remarkably humanoid abilities for movement. The project
is a joint venture between the University of Tokyo's Jouhou System Kougaku
(JSK) Laboratory and the Aircraft and Mechanical Systems Division of Kawada
Industries, Inc. Professor Hirochika Inoue heads the JSK Lab, and his views are
among those of the many roboticists featured in the book, Robo-Sapiens, which
documents current robotic projects around the world and speculates as to the
future of robo-human relations.

There seems to be three schools of thought among roboticists concerning this
future: robots will surpass humans in intelligence and ability, robots will never
approach humans or humans themselves will become increasingly robotic.

One particularly impressive project highlighted in the book is DB (Dynamic
Brain) of the Kawato Dynamic Brain Project at Advanced Telecommunications

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Research Institute near Kyoto, Japan. The DB robot is used by neurophysicists
who work with the robot to learn more about the functioning of the human
brain. The scary thing about DB is it learns, not through programming, but by
watching and mimicking the movements of humans. It's already learned to
balance objects and juggle better than its instructors. There is one glimmer of
hope however, at the book's press time, it still couldn't dance very well.

If the future should bring robots superior to humans, let's hope they run Linux
—perhaps running open-source software will make them more inclined to
share the earth with their inferior humanoid cousins.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/toc090.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Various

Issue #90, October 2001

Our experts answer your technical questions.

Really Big malloc()

I would like to understand what the issues are that limit the memory available
to a single process under Linux.

I have an Athlon 1.2GHz processor with 1.5GB of RAM and 2GB of swap space.
The OS is Red Hat 7.1 with kernel 2.4.3-12. The system sees all 1.5GB on bootup
and reports as much through top and other utilities. But alas, single processes
can grab no more than roughly 940MB. I'm testing the process memory limit by
running a simple C program that allocates a single large char array.

—Ned Piburn, npiburn@oti.gd-ots.com

The Linux kernel has a setting on how the memory is split between the kernel
and user space. It may be that your specific kernel is built to give 3GB to the
kernel and 1G to user space. When you go in the kernel configuration (cd /usr/

src/linux; make menuconfig), check “Processor type and features / Maximum
Virtual Memory” and set it to 3GB (some patched kernels have bugs if you use
2GB).

—Marc Merlin, marc_bts@valinux.com

GNU libc uses brk() for small allocations and mmap() for larger allocations, and
only about 900MB can be allocated using brk(). Many small allocations might
fail where fewer large allocations would succeed. If this is the problem your
code is running into, one solution would be to write a custom malloc()--either
one that always allocates memory using mmap() or one that first mmap()s large
chunks and then parcels out fragments within the chunks.

—Scott Maxwell, maxwell@ScottMaxwell.org

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The mallopt function is covered in the GNU Info documentation for libc under
“Malloc Tunable Parameters”. Set M_MMAP_THRESHOLD to force malloc() to
use mmap() instead of brk().

—Don Marti, info@linuxjournal.com

Where's My Fourth CPU?

I've installed SuSE 7.1 on a three-processor machine and then added a fourth
processor. The OS doesn't see the new CPU. It's a Compaq dl580, x86
architecture. Do you have to recompile or do something extra to get the OS to
acknowledge the new CPU?

—Chet Jaynes, cjorlb@pacbell.net

Linux should be able to detect and use the fourth processor as long as the
motherboard does. Use the BIOS setup in order to make sure the system itself
is enabling it.

—Mario Neto, mneto@argo.com.br

RPM Can't Upgrade RPM

I'm currently using Red Hat Linux 6.2 with RPM-3.0.3. To upgrade from
RPM-3.0.3 to RPM-4.0.2 I tried to install db3-3.1.17 as prescribed but got the
error message:

rpm can only install packages with
major version number <= 3

—Atul, atul_info@yahoo.com

Install the latest release of version 3 RPM, as that deals with both RPM3 and
RPM4. You can get it from ftp.rpm.prg/pub.

—Keith Trollope, keith@wishing-well.demon.co.uk

Adaptec SCSI Card under Red Hat 6.2

My Red Hat 6.2 automatically detects the Adaptec 29160 card, and a dynamic
module AIC-7xxx is added to /etc/conf.modules. But when I connect an SCSI
hard drive to the card, there is no /dev/sda available for fdisk. The device file
exists but cannot be accessed by fdisk. If I boot Red Hat 7.1, the SCSI disk is
recognized and works. But I need to boot Red Hat 6.2 with this SCSI card. How
can I make it work under Rh6.2?

ftp://ftp.rpm.prg/pub

—Joshua, cschen@asiaa.sinica.edu.tw

One solution would be to install your Red Hat 7.1 kernel on a Red Hat 6.2
distribution. You will also need to upgrade a few other packages like modutils.

—Marc Merlin, marc_bts@valinux.com

I had the same problem when I got my Adaptec 29160 (great card, by the way). I
installed Linux on an IDE drive temporarily, got a recent 2.2 series kernel from a
kernel.org mirror and built the AIC-7xxx driver into the kernel, not as a module.
Then I rebooted with the new kernel and copied everything over to the SCSI
drive.

—Don Marti, info@linuxjournal.com

Bad User! No “cd ..”!

What can I do to make a user's directory be like a root directory, where the user
just has an access to that directory or subdirectory?

—Rafael, rafaelss@ig.com.br

What you need is chroot. Many FTP dæmons chroot by default. If you want
Telnet (or even better, SSH) to chroot, you can make a chroot shell. For more
information go to freshmeat.net/projects/jail_c.

—Ben Ford, ben@kalifornia.com

Once you jail a user in, let's say, /home/user, you'll have to make some portion
of /lib and /bin available under /home/user if you want the chrooted user to be
able to run any commands at all.

—Marc Merlin, marc_bts@valinux.com

I Have No DNS and I Must wvdial.

I'm trying to connect to my ISP using an external terminal adaptor. But when
wvdial connects I receive the following errors:

--> warning, can't find address for 'suse.de'
--> warning, address lookup does not work
--> Nameserver (DNS) failure, the connection may
 not work

—Mitko, mitak@post.com

Check in /etc/resolv.conf and make sure you have lines with:

http://freshmeat.net/projects/jail_cp

nameserver aaa.bbb.ccc.ddd

where aaa.bbb.ccc.ddd is the IP addresses of a working DNS server. You can
also look at the PPP log in /var/log for hints on where the problem lies.

—Felipe E. Barousse Boué, fbarousse@piensa.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/toc090.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

Heather Mead

Issue #90, October 2001

Recital Linux Developer, Cleanscape SourceMill, TurboLinux for IBM eServer
and more.

Recital Linux Developer

The Recital Linux Developer is a complete multi-user database, 4GL and suite of
tools for developing and deploying Linux character mode applications. The
package provides language and data compatibility with FoxPro, FoxBASE and
Clipper, allowing migration of existing applications. The RAD environment has
an integrated database, is Java-enabled and provides support for POP3, SMTP
and import/export XML. Access to Recital, FoxPro, dBase, Informix and DB2
data is handled through standard xBase command syntax and user-designed
forms.

Contact Recital Corporation, Inc., 85 Constitution Lane, Danvers, Massachusetts
01923, 800-873-7443 (toll-free), info@recital.com, www.recital.com.

Cleanscape SourceMill

Cleanscape Software announced the availability of Cleanscape SourceMill, an
automatic source-code generation tool designed to aid rapid development and
application modification by automating redundant programming tasks.
Commercial-grade code is generated from object models and code patterns.
Software developers can create application frameworks for multiple target
environments by using SourceMill to instantiate application designs with
templates. SourceMill also can be used to control consistency and enforce
programming standards.

Contact Cleanscape Software International, 2231 Mora Drive, Suite E, Mountain
View, California 94040, 650-864-9600, sales@cleanscape.net, cleanscape.net.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.recital.com
http://www.cleanscape.net

TurboLinux for IBM eServer

TurboLinux 6.5 is a fully supported distribution for the IBM eServer iSeries and
pSeries, systems designed for the small- to mid-sized business. TL 6.5 provides
firewall and web server capabilities, along with compatible file, print and e-mail
services. The unified code base simplifies global deployment through support
for Li18nux and LSB standards. A single iSeries server can support up to 31
separate Linux servers. Each Linux server runs in its own partition and is able to
share processors, disk, tape, CD-ROM, DVD and LAN resources with the other
applications running on the iSeries server.

Contact TurboLinux, 8000 Marina Boulevard, Suite 300, Brisbane, California
94005, 650-228-5000, turbolinux.com

Black Adder 1.0beta3

The beta3 release of Black Adder 1.0, a Linux/Windows UI development
environment for Python and Ruby based on Qt, is now available. Black Adder
combines a visual design environment with debugging, syntax highlighting,
ODBC interfaces and extensive HTML documentation into a comprehensive
platform for developing Python and Ruby applications. Changes for this release
include Qt v.2.3.1 and support for Python v2.0.x and 2.1.x, among others.

Contact theKompany.com, PO Box 80265, Rancho Santa Margarita, California
92688, 949-713-3276, sales@thekompany.com, thekompany.com

FlexeLint for C/C++

Version 8.0 of FlexeLint for C/C++ is now available. FlexeLint is a static analyzer
that will analyze a mixed suite of C and C++ programs and report on bugs,
glitches and inconsistencies to help develop maintainable and portable
programs. New to version 8.0 are interfunction value tracking, improved
exception handling, checks for adherence to MISRA guidelines and 20 new
options. Other checks include user-defined function semantic checking, pointer
tracking and control flow-based analysis of variable initialization.

Contact Gimpel Software, 3207 Hogarth Lane, Collegeville, Pennsylvania 19426,
610-584-4261, sales@gimpel.com, gimpel.com

StuffIt Engine SDK

Aladdin Systems offers the StuffIt Engine Software Developer Kit, allowing
developers to integrate compression into their projects. The SDK can be used
on the fly to wrap a group of files into a single self-extracting archive for the
user's computer or to reduce the time it takes to send and receive files.

http://www.turbolinux.com
http://www.thekompany.com
http://www.gimpel.com

Supported compression and encoding formats are StuffIt, Zip, Gzip, Tar, Rar,
Bzip2, UUencode, UNIX Compress, BinHex, MacBinary and more, and all
formats are accessible from a single API.

Contact Aladdin Systems, Inc., 245 Westridge Drive, Watsonville, California
95076, 831-761-6200, info@aladdinsys.com, aladdinsys.com

Beowulf Professional Edition

Scyld Computing released the Beowulf Professional Edition, cluster operating
system software that is ready to run out of the box. The Professional Edition
offers simplified cluster setup, integration and administration, along with
documentation and support from the original Beowulf development team. New
additions to this version include full Alpha support, Myrinet and Gigabit
Ethernet support, the batch queue system (BBQ), web-based administration
and job monitoring, and PVFS, NFSv3 and ROMIO filesystems.

Contact Scyld Computing Corporation, 410 Severn Avenue, Suite 210,
Annapolis, Maryland 21403, 410-990-9993, sales@scyld.com, scyld.com

CapeStudio RAD Tool

The CapeStudio RAD web services development tool enables software
developers to build and deploy web services. CapeStudio automatically
generates code for Java or Visual Basic from web services description language
(WSDL) files, which describe the interfaces to web services, reducing the time
needed to build the service. A graphical environment for defining bidirectional
transformations between XML and SOAP messages is also included in
CapeStudio. It is a standalone environment that works with any web services
platform that adheres to the XML, SOAP, WSDL and UDDI industry standards.

Contact Cape Clear Software, Inc., 900 East Hamilton Avenue, Suite 100,
Campbell, California 95008, 866-227-3226 (toll-free), info@capeclear.com,
capeclear.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.aladdinsys.com
http://www.scyld.com
http://www.capeclear.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/toc090.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Show Report, Day One

Doc Searls

Issue #90, October 2001

Doc goes to the show.

Back in May, Craig Mundie, Microsoft's Senior VP Advanced Strategies, made a
very strategic move; he gave a speech at NYU's Stern School of Business that
announced the terms by which Microsoft was cracking open—barely—its
source code. He called the company's new licensing model “shared source”. (I
just wrote “scared source” by mistake, which tells you where my mind is
headed.)

The fact that Microsoft would start rapping about any kind of source code, and
modify it with a fresh new euphemism—shared—caused immediate tissue
rejection in the hacker cultural body. Leading hackers so certain of their own
Truth that they refuse to appear on each other's t-shirts were suddenly
gathered around their collective keyboards to craft a single response that
would say, in polite terms, “Embrace and extend this, dude.”

The result was an open letter published on Bruce Perens' site, and signed by
Bruce and a quotariat of Free Software and Open Source luminaries: Richard
Stallman, Eric S. Raymond, Guido Van Rossum, Tim O'Reilly, Larry Augustin, Bob
Young, Larry Wall, Miguel de Icaza and Linus Torvalds. (An anonymous coward
on Slashdot wrote, “It's like a human Beowulf cluster!”) While critical and
challenging to Microsoft, its bottom line was open and inviting:

We urge Microsoft to go the rest of the way in embracing the Open Source
software development paradigm. Stop asking for one-way sharing, and accept
the responsibility to share and share alike that comes with the benefits of Open
Source. Acknowledge that it is compatible with business.

Free Software is a great way to build a common foundation of software that
encourages innovation and fair competition. Microsoft, it's time for you to join
us.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.microsoft.com/presspass/exec/craig/default.asp
http://www.microsoft.com/presspass/exec/craig/05-03sharedsource.asp
http://www.microsoft.com/presspass/features/2001/may01/05-03csm.asp
http://www.perens.com/Articles/StandTogether.html
http://www.perens.com
http://www.stallman.org
http://www.stallman.org
http://catb.org/~esr
http://www.python.org/~guido
http://oreilly.com/oreilly/tim_bio.html
http://www.valinux.com/about/staff/executives.html
http://www.redhat.com/about/corporate/team/young.html
http://www.redhat.com/about/corporate/team/young.html
http://www.wall.org/~larry
http://primates.helixcode.com/~miguel
http://www.cs.Helsinki.FI/u/torvalds
http://slashdot.org
http://www.microsoft.com

Mundie came back with a piece in CNET that framed his argument in terms of
economics, manufacture and the PC's popularity:

... this is more than just an academic debate. The commercial software industry
is a significant driver of our global economy. It employs 1.35 million people and
produces $175 billion in worldwide revenues annually (sources: BSA, IDC).

The business model for commercial software has a proven track record and is a
key engine of economic growth for many countries. It has boosted productivity
and efficiency in almost every sector of the economy, as businesses and
individuals have enjoyed the wealth of tools, information and other activities
made possible in the PC era.

Then he took on the GPL, the Free Software Foundation's General Public
License:

In my speech, I did not question the right of the open-source software model to
compete in the marketplace. The issue at hand is choice; companies and
individuals should be able to choose either model, and we support this right. I
did call out what I believe is a real problem in the licensing model that many
open-source software products employ: the General Public License.

The GPL turns our existing concepts of intellectual property rights on their
heads. Some of the tension I see between the GPL and strong business models
is by design, and some of it is caused simply because there remains a high level
of legal uncertainty around the GPL—uncertainty that translates into business
risk.

In my opinion, the GPL is intended to build a strong software community at the
expense of a strong commercial software business model. That's why Linus
Torvalds said last week that “Linux is never really going to be a rich sell.”

This isn't to say that some companies won't find a business plan that can make
money releasing products under the GPL. We have yet to see such companies
emerge, but perhaps some will.

He added,

What is at issue with the GPL? In a nutshell, it debases the currency of the ideas
and labor that transform great ideas into great products.

It would be easy to dismiss all this as provocation in the voice of boilerplate, or
worse, “a declaration of war on our culture”, as one überhacker privately called
it. But neither of those responses are useful to folks caught in the middle—the
IT professionals my Linux Journal column calls “suits”.

http://www.internetnews.com/intl-news/article/0,,6_766141,00.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.linuxforsuits.com/lfs_columns

As it happened Eric Raymond and I were both guests on the May 14 broadcast
of “The Linux Show”. When conversation came around to the reasoning behind
open-source rhetoric, Eric said this:

We used the term open source not to piss off the FSF folks, but to claim a
semantic space where we could talk about issues without scaring away the
people whose beliefs we wanted to change.

So far this has been an extremely successful strategy for which Eric and the
Open Source community deserve extreme credit. Even if IT suits don't agree
about what “open source” means, they're all at least talking about it. And using
lots of it, too.

But if markets are conversations, everybody who inhabits the open-source
semantic space is involved in the market—a market that now includes
Microsoft. What happens if Microsoft makes more sense to their constituency
than we do? This is an important question. Conversing is not the same as
believing. Remember Eric's last seven words from above. Most of the suits
talking about open source are still people whose beliefs we want to change.

Changing other people's beliefs isn't like changing your shoes: it's like changing
other people's shoes. Even if the other guy's shoes are ugly and uncomfortable,
they're still familiar to him. And in this case, familiar doesn't cover it. In the IT
world, Microsoft's platforms, software and tools are the prevailing environment
that Microsoft wants very much to protect.

How much? Here's Steve Ballmer talking about Linux in January: “I think you
have to rate competitors that threaten your core higher than you rate
competitors where you're trying to take from them.” He adds: “It puts the Linux
phenomenon and the Unix phenomenon at the top of the list. I'd put the Linux
phenomenon really as threat No. 1.” He goes on to say Sun and Oracle are
“second tier” rivals, adding, “I'd put AOL probably maybe at that level or a half-
step down.”

So how well does Steve Ballmer understand this threat? Not very, judging from
this this wild conflation of open source, Linux and licensing:

The only thing we have a problem with is when the government funds open-
source work. Government funding should be for work that is available to
everybody. Open source is not available to commercial companies. The way the
license is written, if you use any open-source software, you have to make the
rest of your software open source. If the government wants to put something in
the public domain, it should. Linux is not in the public domain. Linux is a cancer

http://www.catb.org/~esr
http://www.thelinuxshow.com
http://www.google.com/search?q=%22open+source%22
http://www.opensource.org
http://content.techweb.com/wire/story/TWB20010110S0006
http://www.sun.com
http://www.oracle.com
http://www.suntimes.com/output/tech/cst-fin-micro01.html

that attaches itself in an intellectual property sense to everything it touches.
That's the way that the license works.

Never one to shy from a fight, Eric Raymond blasted back a Q&A titled The Big
Lie:

Other open-source licenses—such as the BSD license in the TCP/IP stack that
Microsoft adapted for Windows—will never infect anybody's code or data,
because they're designed not to. But Ballmer wants business people and the
public to fear them all, because only if open source is general is discredited will
Microsoft maintain its monopoly.

The Big Lie is a term originally coined to describe a characteristic form of Nazi
(and later Soviet) propaganda. The essence of the Big Lie propaganda
technique is that if you repeat the lie often enough over enough channels,
people will soak it up through their pores and come to believe it as something
“everybody knows”.

In the last three months, Jim Allchin and Craig Mundie and Steve Ballmer have
launched a classic Big Lie campaign against open source. They have described it
as “un-American”, “a destroyer”, and “a cancer”. They have deliberately
confused the GPL with non-infectious open-source licenses, and they have
deliberately confused active combination of code with passive aggregation of
data. They have lied, and lied, and lied again.

Why? Because the most truthful thing Ballmer admitted in that interview is that
yeah, Linux *is* a threat to Microsoft.

There's a good reason Microsoft can get away with a lie & confuse strategy: its
#1 threat is pretty damn confusing already, without any help from Microsoft.
Most confusing of all, from the perspective of common business sense, is the
GPL, about which the Open Source community is both respectful and
protective, even though there is plenty of disagreement about it. By hitting the
GPL squarely where it appears least useful for business, Mundie disperses the
community like a rack of pool balls. Suddenly they're all over the place, talking
about all kinds of stuff.

To see what I'm talking bout, check out this diagram from the Free Software
Foundation's philosophy page: fsf

https://secure2.linuxjournal.com/ljarchive/LJ/000/5007.html
https://secure2.linuxjournal.com/ljarchive/LJ/000/5007.html
http://www.fsf.org/philosophy/categories.html
http://www.fsf.org/philosophy/why-free.html

From the perspective of both Microsoft and its customers, the one thing that's
easy to understand (not right or wrong, just easy) is in the upper right. This is
the familiar stuff that IT suits have been paying for since the Nixon
administration. By aiming insults at the GPL in the lower left, Microsoft hopes
everybody in the Free/Open communities will rush to defend what business
folks have the most trouble understanding: the FSF's belief that software
should not be owned.

In other words, Microsoft wants us to join a “debate” in which we defend the
one thing we can't stop arguing about amongst ourselves. What's more, they've
located their position—shared source—in a location toward which the business
end of the open source world is headed anyway.

That's right. “Everybody's headed toward a hybrid model”, Larry Augustin told
me last week. He didn't have time to explain exactly what he meant, but last
night at dinner Eric Raymond gave me an explanation that included this
interesting fact: VA will sell some closed-source software. He hedged with some
pretty big qualifiers, but the word “closed” passed his lips.

A few days ago I asked another CEO what's going on. He said, “Call it `shared
source,' `gated source' `source under glass'... we're all working in the same
direction.” When I pressed him for a reason, he said, “We need to make
money.”

Nobody in the commercial end of the Open Source community is eager to
speak in vivid terms about the drift in their commercial source code policies—at
least not yet. Meanwhile, Microsoft is very eager to do exactly that, giving them
a certain advantage.

http://www.fsf.org/philosophy/why-free.html

Will Craig Mundie will use that advantage on Thursday when he debates Red
Hat CTO Michael Tiemann? Will open-source luminaries (a superset of the
Beowulf Cluster who signed the original response to Mundie) take up the issue
when I raise it with them at the Open Source Summit tomorrow? And will the
open-source conversation grow to include independent commercial developers
like Dave Winer and his company, Userland, which are doing open-source work
(in Userland's case, on XML-RPC and SOAP) but have not been members of the
community until now?

Finding out more about this stuff is Job One in San Diego this week. Stay tuned.

Doc Searls (info@linuxjournal.com) is Senior Editor of Linux Journal. His
monthly column is Linux For Suits. He is also a co-author of The Cluetrain
Manifesto.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://conferences.oreillynet.com/cs/os2001/view/e_spkr/942
http://conferences.oreillynet.com/cs/os2001/view/e_sess/1834
http://conferences.oreillynet.com/cs/os2001/view/e_spkr/128
http://www.scripting.com
http://www.userland.com
http://www.xmlrpc.com/stories/storyReader$1726#whatIsXmlrpc
http://www.soapware.org
mailto:info@linuxjournal.com
http://www.searls.com/sandiego_jul01/ds_jul23_01.html
http://www.cluetrain.com
http://www.cluetrain.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/090/toc090.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	Toolbox
	Columns
	Reviews
	Departments
	Strictly On-Line
	Open-Source Software at the Aerodynamics Laboratory
	Steve Jenkins
	The Present
	The Future

	Linux and Samba in a Federal Lab
	Brian Gollsneider
	Mike Martin
	Test Setup
	Operation
	Linux
	NFS
	Samba
	NT Setup
	Conclusion
	Future

	At Your Service—Job Scheduling for Linux
	Louis J. Iacona
	at's Features
	Using at
	Administering at
	Conclusion

	How to Write a Linux USB Device Driver
	Greg Kroah-Hartman

	Data Modeling with Alzabo
	Reuven M. Lerner
	The Problem
	Installing Alzabo
	Editing Schemas
	Using Our Schema from a Program
	Rewriting in Alzabo
	Caches and Exceptions
	Issues
	Conclusion

	Engineering Intelligence
	Marcel Gagné

	GPG: the Best Free Crypto You Aren't Using, Part II of II
	Mick Bauer
	Generating Your Key Pair
	Create a Revocation Certificate
	Exporting Your Public Key
	Importing, Verifying and Signing a Friend's
Key
	Using GnuPG to Encrypt and Decrypt
Things
	Using GnuPG to Sign and Verify Things
	GnuPG Front Ends (GUIs, etc.)
	Conclusion

	Alias|Wavefront Maya 4
	Robin Rowe

	Modeling Seismic Wave Propagation on a 156GB PC Cluster
	Dimitri Komatitsch
	Jeroen Tromp
	Numerical Technique
	Hardware
	Software Configuration and Code
Development
	Bolivia Shakes and Moves
	Acknowledgements

	Distribution Upgrades
	David A. Bandel

	Naming Open-Source Software
	Lawrence Rosen

	The Bazaar Way to Bet
	Doc Searls

	The Robots Are Coming, The Robots Are Coming
	Rick Lehrbaum
	Linux Upgrade for the Palm III
	Transvirtual Nets Four Million Dollars in
Investment, Launches
	Linux in 27 × 27mm

	Microlite BackupEDGE Version 01.01.08
	Charles Curley
	Installation
	The Program
	Backing Up
	Verification
	Restoration
	Documentation
	Support
	Disaster Recovery

	Letters
	Various
	Lay off the Object Pascal
	Geek Disclaimer
	Ditch the French
	Surprised but Unoffended
	Searching for Open Kylix

	upFRONT
	Various
	Postscript to This Month's Geek Law
Column
	LJ Index—October
2001
	Sources
	Windows Server Gains Appear to Be at Sun's
Expense
	OpenPGP Signatures: the New Baseball
Cards?
	Stop the Presses: Something to CARP
about
	They Said It

	Brains, Not Trains
	Richard Vernon

	Best of Technical Support
	Various
	Really Big malloc()
	Where's My Fourth CPU?
	RPM Can't Upgrade RPM
	Adaptec SCSI Card under Red Hat 6.2
	Bad User! No “cd ..”!
	I Have No DNS and I Must wvdial.

	New Products
	Heather Mead
	Recital Linux Developer
	Cleanscape SourceMill
	TurboLinux for IBM eServer
	Black Adder 1.0beta3
	FlexeLint for C/C++
	StuffIt Engine SDK
	Beowulf Professional Edition
	CapeStudio RAD Tool

	Show Report, Day One
	Doc Searls

